State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, PR China.
Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing, PR China.
Biosens Bioelectron. 2014 Jul 15;57:245-53. doi: 10.1016/j.bios.2014.02.026. Epub 2014 Feb 20.
This paper reports a microfluidic system that enables the characterization of tumor cell electrical properties where cells were aspirated through a constriction channel (cross-section area smaller than that of biological cells) with cellular impedance profiles measured and translated to specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm). Two batches of H1299 cells were quantified by the microfluidic platform with different constriction channel cross-section areas, recording no differences with statistical significance (p<0.001) in both Cspecific membrane (1.63±0.52 vs. 1.65±0.43 μF/cm(2)) and σcytoplasm (0.90±0.19 vs. 0.92±0.15S/m), and thus confirming the reliability of the microfluidic platform. For paired high- and low-metastatic carcinoma strains 95D (ncell=537) and 95C cells (ncell=486), significant differences in both Cspecific membrane (2.00±0.43 vs. 1.62±0.39 μF/cm(2)) and σcytoplasm (0.88±0.46 vs. 1.25±0.35S/m) were observed. Statistically significant difference only in Cspecific membrane (2.00±0.43 vs. 1.58±0.30 μF/cm(2)) was observed for 95D cells (ncell=537) and 95D CCNY-KD cells with single oncogene CCNY down regulation (ncell=479, CCNY is a membrane-associated protein). In addition, statistically significant difference only in σcytoplasm (0.73±0.17 vs. 1.01±0.17S/m) was observed for A549 cells (ncell=487) and A549 CypA-KD cells with single oncogene CypA down regulation (ncell=597, CypA is a cytosolic protein). These results validated the developed microfluidic platform for Cspecific membrane and σcytoplasm quantification and confirmed the feasibility of using Cspecific membrane and σcytoplasm for tumor cell classification.
本文报道了一种微流控系统,该系统可对肿瘤细胞的电学特性进行表征,即将细胞通过收缩通道(截面积小于生物细胞)吸入,测量细胞阻抗谱,并转化为特定的细胞膜电容(Cspecific membrane)和细胞质电导率(σcytoplasm)。使用微流控平台对两批 H1299 细胞进行了定量分析,不同收缩通道截面积的 Cspecific membrane(1.63±0.52 与 1.65±0.43 μF/cm(2))和 σcytoplasm(0.90±0.19 与 0.92±0.15S/m)均无统计学差异(p<0.001),从而证实了微流控平台的可靠性。对于高转移和低转移癌系 95D(ncell=537)和 95C 细胞(ncell=486),在 Cspecific membrane(2.00±0.43 与 1.62±0.39 μF/cm(2))和 σcytoplasm(0.88±0.46 与 1.25±0.35S/m)方面均存在显著差异。仅在 Cspecific membrane(2.00±0.43 与 1.58±0.30 μF/cm(2))方面,95D 细胞(ncell=537)和单基因突变 CCNY 下调的 95D CCNY-KD 细胞(ncell=479,CCNY 是一种膜相关蛋白)之间存在统计学差异。此外,在 A549 细胞(ncell=487)和单基因突变 CypA 下调的 A549 CypA-KD 细胞(ncell=597,CypA 是一种细胞质蛋白)中,仅在细胞质电导率(0.73±0.17 与 1.01±0.17S/m)方面存在统计学差异。这些结果验证了所开发的用于 Cspecific membrane 和 σcytoplasm 定量的微流控平台,并证实了使用 Cspecific membrane 和 σcytoplasm 进行肿瘤细胞分类的可行性。