Suppr超能文献

基于内容与位置的预测二级结构统计特征在蛋白质结构类别预测中的比较研究

Comparison study on statistical features of predicted secondary structures for protein structural class prediction: From content to position.

机构信息

College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China.

出版信息

BMC Bioinformatics. 2013 May 4;14:152. doi: 10.1186/1471-2105-14-152.

Abstract

BACKGROUND

Many content-based statistical features of secondary structural elements (CBF-PSSEs) have been proposed and achieved promising results in protein structural class prediction, but until now position distribution of the successive occurrences of an element in predicted secondary structure sequences hasn't been used. It is necessary to extract some appropriate position-based features of the secondary structural elements for prediction task.

RESULTS

We proposed some position-based features of predicted secondary structural elements (PBF-PSSEs) and assessed their intrinsic ability relative to the available CBF-PSSEs, which not only offers a systematic and quantitative experimental assessment of these statistical features, but also naturally complements the available comparison of the CBF-PSSEs. We also analyzed the performance of the CBF-PSSEs combined with the PBF-PSSE and further constructed a new combined feature set, PBF11CBF-PSSE. Based on these experiments, novel valuable guidelines for the use of PBF-PSSEs and CBF-PSSEs were obtained.

CONCLUSIONS

PBF-PSSEs and CBF-PSSEs have a compelling impact on protein structural class prediction. When combining with the PBF-PSSE, most of the CBF-PSSEs get a great improvement over the prediction accuracies, so the PBF-PSSEs and the CBF-PSSEs have to work closely so as to make significant and complementary contributions to protein structural class prediction. Besides, the proposed PBF-PSSE's performance is extremely sensitive to the choice of parameter k. In summary, our quantitative analysis verifies that exploring the position information of predicted secondary structural elements is a promising way to improve the abilities of protein structural class prediction.

摘要

背景

许多基于二级结构元(CBF-PSSEs)内容的统计特征已被提出,并在蛋白质结构类预测中取得了有希望的结果,但到目前为止,还没有使用预测二级结构序列中元素连续出现的位置分布。为了进行预测任务,有必要提取一些适当的基于位置的二级结构元特征。

结果

我们提出了一些预测二级结构元的基于位置的特征(PBF-PSSEs),并评估了它们相对于可用的 CBF-PSSEs 的内在能力,这不仅为这些统计特征提供了系统和定量的实验评估,而且自然补充了可用的 CBF-PSSEs 比较。我们还分析了 CBF-PSSEs 与 PBF-PSSE 相结合的性能,并进一步构建了一个新的组合特征集 PBF11CBF-PSSE。基于这些实验,获得了使用 PBF-PSSEs 和 CBF-PSSEs 的新的有价值的指导原则。

结论

PBF-PSSEs 和 CBF-PSSEs 对蛋白质结构类预测有强烈的影响。当与 PBF-PSSE 结合时,大多数 CBF-PSSEs 都能大大提高预测精度,因此 PBF-PSSEs 和 CBF-PSSEs 必须紧密合作,以便对蛋白质结构类预测做出重大而互补的贡献。此外,所提出的 PBF-PSSE 的性能对参数 k 的选择非常敏感。总之,我们的定量分析验证了探索预测二级结构元的位置信息是提高蛋白质结构类预测能力的一种很有前途的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b67d/3652764/24845a285a06/1471-2105-14-152-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验