Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125, USA.
Nat Mater. 2013 Aug;12(8):719-23. doi: 10.1038/nmat3635. Epub 2013 May 5.
Significant improvements to the thermoelectric figure of merit ZT have emerged in recent years, primarily due to the engineering of material composition and nanostructure in inorganic semiconductors (ISCs). However, many present high-ZT materials are based on low-abundance elements that pose challenges for scale-up, as they entail high material costs in addition to brittleness and difficulty in large-area deposition. Here we demonstrate a strategy to improve ZT in conductive polymers and other organic semiconductors (OSCs) for which the base elements are earth-abundant. By minimizing total dopant volume, we show that all three parameters constituting ZT vary in a manner so that ZT increases; this stands in sharp contrast to ISCs, for which these parameters have trade-offs. Reducing dopant volume is found to be as important as optimizing carrier concentration when maximizing ZT in OSCs. Implementing this strategy with the dopant poly(styrenesulphonate) in poly(3,4-ethylenedioxythiophene), we achieve ZT = 0.42 at room temperature.
近年来,无机半导体(ISCs)的材料组成和纳米结构工程使得热电优值 ZT 得到了显著提高。然而,许多目前具有高 ZT 的材料基于丰度较低的元素,这对扩大规模提出了挑战,因为除了脆性和大面积沉积困难之外,它们还需要高材料成本。在这里,我们展示了一种提高导电聚合物和其他有机半导体(OSCs)ZT 的策略,这些有机半导体的基础元素在地球上很丰富。通过最小化总掺杂剂体积,我们表明构成 ZT 的三个参数以一种使 ZT 增加的方式变化;这与 ISCs 形成鲜明对比,在 ISCs 中,这些参数存在权衡。在最大化 OSCs 中的 ZT 时,我们发现减小掺杂剂体积与优化载流子浓度同样重要。我们在聚(3,4-亚乙基二氧噻吩)中使用掺杂剂聚苯乙烯磺酸盐来实现这一策略,在室温下实现了 ZT=0.42。