Suppr超能文献

使用 NONMEM 对非边界数据建模连续有界结局评分的混合效应贝塔回归。

Mixed-effects beta regression for modeling continuous bounded outcome scores using NONMEM when data are not on the boundaries.

机构信息

Model-Based Drug Development, Janssen Research & Development, 920 Route 202, Raritan, NJ, USA.

出版信息

J Pharmacokinet Pharmacodyn. 2013 Aug;40(4):537-44. doi: 10.1007/s10928-013-9318-0. Epub 2013 May 5.

Abstract

Beta regression models have been recommended for continuous bounded outcome scores that are often collected in clinical studies. Implementing beta regression in NONMEM presents difficulties since it does not provide gamma functions required by the beta distribution density function. The objective of the study was to implement mixed-effects beta regression models in NONMEM using Nemes' approximation to the gamma function and to evaluate the performance of the NONMEM implementation of mixed-effects beta regression in comparison to the commonly used SAS approach. Monte Carlo simulations were conducted to simulate continuous outcomes within an interval of (0, 70) based on a beta regression model in the context of Alzheimer's disease. Six samples per subject over a 3 years period were simulated at 0, 0.5, 1, 1.5, 2, and 3 years. One thousand trials were simulated and each trial had 250 subjects. The simulation-reestimation exercise indicated that the NONMEM implementation using Laplace and Nemes' approximations provided only slightly higher bias and relative RMSE (RRMSE) compared to the commonly used SAS approach with adaptive Gaussian quadrature and built-in gamma functions, i.e., the difference in bias and RRMSE for fixed-effect parameters, random effects on intercept, and the precision parameter were <1-3 %, while the difference in the random effects on the slope was <3-7 % under the studied simulation conditions. The mixed-effect beta regression model described the disease progression for the cognitive component of the Alzheimer's disease assessment scale from the Alzheimer's Disease Neuroimaging Initiative study. In conclusion, with Nemes' approximation of the gamma function, NONMEM provided comparable estimates to those from SAS for both fixed and random-effect parameters. In addition, the NONMEM run time for the mixed beta regression models appeared to be much shorter compared to SAS, i.e., 1-2 versus 20-40 s for the model and data used in the manuscript.

摘要

贝塔回归模型已被推荐用于临床研究中经常收集的连续有界结局评分。由于 NONMEM 不提供贝塔分布密度函数所需的伽马函数,因此在 NONMEM 中实现贝塔回归存在困难。本研究的目的是使用 Nemes 对伽马函数的逼近在 NONMEM 中实现混合效应贝塔回归模型,并评估与常用的 SAS 方法相比,NONMEM 实现混合效应贝塔回归的性能。通过蒙特卡罗模拟,基于阿尔茨海默病背景下的贝塔回归模型,模拟了(0,70)区间内的连续结局。在 0、0.5、1、1.5、2 和 3 年时,每个受试者模拟 6 个样本。模拟了 1000 次试验,每次试验有 250 个受试者。模拟-再估计表明,与常用的具有自适应高斯求积和内置伽马函数的 SAS 方法相比,使用拉普拉斯和 Nemes 逼近的 NONMEM 实现仅略微增加了偏差和相对 RMSE(RRMSE),即固定效应参数、截距的随机效应和精度参数的偏差和 RRMSE 差异<1-3%,而斜率的随机效应差异<3-7%在研究的模拟条件下。混合效应贝塔回归模型描述了阿尔茨海默病神经影像学倡议研究中阿尔茨海默病评估量表认知成分的疾病进展。总之,使用伽马函数的 Nemes 逼近,NONMEM 为固定和随机效应参数提供了与 SAS 相当的估计值。此外,与 SAS 相比,NONMEM 运行混合贝塔回归模型的时间似乎要短得多,即在使用本文模型和数据时,NONMEM 的运行时间为 1-2 秒,而 SAS 的运行时间为 20-40 秒。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验