Sessitsch Angela, Kuffner Melanie, Kidd Petra, Vangronsveld Jaco, Wenzel Walter W, Fallmann Katharina, Puschenreiter Markus
AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-3430 Tulln, Austria.
Soil Biol Biochem. 2013 May;60(100):182-194. doi: 10.1016/j.soilbio.2013.01.012.
Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element - tolerating or - accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant-bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils.
植物提取利用能够在组织中富集污染物的微量元素积累植物。然后通过收割植物来去除污染物。植物提取的成功取决于根系对微量元素的可利用性以及植物在地上部分截留、吸收和积累微量元素的能力。目前的植物提取实践要么采用超积累植物,要么采用快速生长的高生物量植物;通过土壤改良增加土壤中微量元素的可利用性,可提高植物提取过程。本综述将聚焦于植物相关细菌在提高根际微量元素可利用性方面的作用。我们报告了通常与耐受或积累微量元素的植物相关的细菌种类,并讨论了它们如何有助于提高植物对微量元素的吸收,从而提高植物提取的效率和速率。这种对微量元素吸收的增强可归因于微生物对根系吸收特性的改变,如增加根长、表面积和根毛数量,或通过对植物生长、微量元素络合和缓解植物毒性的有益作用,提高根际微量元素对植物的有效性以及随后向地上部分的转运。对文献数据的分析表明,目前细菌接种对植物提取效率的影响并不一致。植物与细菌相互作用以及接种菌株定殖的一些关键过程仍需更详细地阐明,以便全面应用细菌辅助修复受微量元素污染的土壤。