Suppr超能文献

相似文献

2
Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers.
Biopolymers. 2012 Jun;97(6):418-31. doi: 10.1002/bip.21724. Epub 2011 Oct 20.
4
Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins.
Int J Biol Macromol. 1999 Mar-Apr;24(2-3):271-5. doi: 10.1016/s0141-8130(98)00089-0.
6
Structural characterization and mechanical properties of chimeric Masp1/Flag minispidroins.
Biochimie. 2020 Jan;168:251-258. doi: 10.1016/j.biochi.2019.11.014. Epub 2019 Nov 26.
7
Complete gene sequence and mechanical property of the fourth type of major ampullate silk protein.
Acta Biomater. 2023 Jan 1;155:282-291. doi: 10.1016/j.actbio.2022.11.042. Epub 2022 Nov 23.
9
Sequential origin in the high performance properties of orb spider dragline silk.
Sci Rep. 2012;2:782. doi: 10.1038/srep00782. Epub 2012 Oct 29.
10
Molecular Dynamics of Synthetic Flagelliform Silk Fiber Assembly.
Macromol Mater Eng. 2021 Jan;306(1). doi: 10.1002/mame.202000530. Epub 2020 Nov 6.

引用本文的文献

1
Bridging Nature and Engineering: Protein-Derived Materials for Bio-Inspired Applications.
Biomimetics (Basel). 2024 Jun 20;9(6):373. doi: 10.3390/biomimetics9060373.
2
Custom-designed, mass silk production in genetically engineered silkworms.
PNAS Nexus. 2024 Mar 22;3(4):pgae128. doi: 10.1093/pnasnexus/pgae128. eCollection 2024 Apr.
3
Efficient Biosynthetic Fabrication of Spidroins with High Spinning Performance.
Adv Sci (Weinh). 2024 Jun;11(22):e2400128. doi: 10.1002/advs.202400128. Epub 2024 Mar 23.
5
Protein-Based Biological Materials: Molecular Design and Artificial Production.
Chem Rev. 2023 Mar 8;123(5):2049-2111. doi: 10.1021/acs.chemrev.2c00621. Epub 2023 Jan 24.
6
Recombinant Spider Silk: Promises and Bottlenecks.
Front Bioeng Biotechnol. 2022 Mar 8;10:835637. doi: 10.3389/fbioe.2022.835637. eCollection 2022.
7
Spider Silk-Inspired Artificial Fibers.
Adv Sci (Weinh). 2022 Feb;9(5):e2103965. doi: 10.1002/advs.202103965. Epub 2021 Dec 19.
8
Customized Flagelliform Spidroins Form Spider Silk-like Fibers at pH 8.0 with Outstanding Tensile Strength.
ACS Biomater Sci Eng. 2022 Jan 10;8(1):119-127. doi: 10.1021/acsbiomaterials.1c01354. Epub 2021 Dec 15.
9
Molecular Dynamics of Synthetic Flagelliform Silk Fiber Assembly.
Macromol Mater Eng. 2021 Jan;306(1). doi: 10.1002/mame.202000530. Epub 2020 Nov 6.
10
Engineering Silk Materials: From Natural Spinning to Artificial Processing.
Appl Phys Rev. 2020 Mar;7(1). doi: 10.1063/1.5091442. Epub 2020 Feb 26.

本文引用的文献

1
Mechanism of resilin elasticity.
Nat Commun. 2012;3:1003. doi: 10.1038/ncomms2004.
2
Post-secretion processing influences spider silk performance.
J R Soc Interface. 2012 Oct 7;9(75):2479-87. doi: 10.1098/rsif.2012.0277. Epub 2012 May 23.
3
Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties.
Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):923-8. doi: 10.1073/pnas.1109420109. Epub 2012 Jan 3.
4
Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers.
Biomacromolecules. 2012 Feb 13;13(2):304-12. doi: 10.1021/bm201262n. Epub 2012 Jan 12.
5
Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers.
Biopolymers. 2012 Jun;97(6):418-31. doi: 10.1002/bip.21724. Epub 2011 Oct 20.
6
Recombinant exon-encoded resilins for elastomeric biomaterials.
Biomaterials. 2011 Dec;32(35):9231-43. doi: 10.1016/j.biomaterials.2011.06.010. Epub 2011 Sep 29.
7
Tunable self-assembly of genetically engineered silk--elastin-like protein polymers.
Biomacromolecules. 2011 Nov 14;12(11):3844-50. doi: 10.1021/bm201165h. Epub 2011 Sep 30.
8
BioCARS: a synchrotron resource for time-resolved X-ray science.
J Synchrotron Radiat. 2011 Jul;18(Pt 4):658-70. doi: 10.1107/S0909049511009423. Epub 2011 May 12.
9
Inducing β-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching.
Biomacromolecules. 2011 Jun 13;12(6):2375-81. doi: 10.1021/bm200463e. Epub 2011 May 24.
10
Natural tri- to hexapeptides self-assemble in water to amyloid beta-type fiber aggregates by unexpected alpha-helical intermediate structures.
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1361-6. doi: 10.1073/pnas.1014796108. Epub 2011 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验