Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801.
Ground Water. 2014 May-Jun;52(3):448-60. doi: 10.1111/gwat.12061. Epub 2013 May 6.
Quantitative analyses of groundwater flow and transport typically rely on a physically-based model, which is inherently subject to error. Errors in model structure, parameter and data lead to both random and systematic error even in the output of a calibrated model. We develop complementary data-driven models (DDMs) to reduce the predictive error of physically-based groundwater models. Two machine learning techniques, the instance-based weighting and support vector regression, are used to build the DDMs. This approach is illustrated using two real-world case studies of the Republican River Compact Administration model and the Spokane Valley-Rathdrum Prairie model. The two groundwater models have different hydrogeologic settings, parameterization, and calibration methods. In the first case study, cluster analysis is introduced for data preprocessing to make the DDMs more robust and computationally efficient. The DDMs reduce the root-mean-square error (RMSE) of the temporal, spatial, and spatiotemporal prediction of piezometric head of the groundwater model by 82%, 60%, and 48%, respectively. In the second case study, the DDMs reduce the RMSE of the temporal prediction of piezometric head of the groundwater model by 77%. It is further demonstrated that the effectiveness of the DDMs depends on the existence and extent of the structure in the error of the physically-based model.
地下水流动和运移的定量分析通常依赖于基于物理的模型,而该模型本身容易出现误差。即使在经过校准的模型输出中,模型结构、参数和数据中的误差也会导致随机误差和系统误差。我们开发了补充的数据驱动模型 (DDM) 来降低基于物理的地下水模型的预测误差。两种机器学习技术,基于实例的加权和支持向量回归,用于构建 DDM。使用两个真实世界的案例研究,即共和河契约管理模型和斯波坎谷-拉思德姆草原模型,说明了这种方法。这两个地下水模型具有不同的水文地质背景、参数化和校准方法。在第一个案例研究中,引入了聚类分析进行数据预处理,使 DDM 更加稳健和计算高效。DDM 将地下水模型水头的时间、空间和时空预测的均方根误差 (RMSE) 分别降低了 82%、60%和 48%。在第二个案例研究中,DDM 将地下水模型水头的时间预测的 RMSE 降低了 77%。进一步证明,DDM 的有效性取决于基于物理模型的误差中结构的存在和程度。