Suppr超能文献

在水头变化期间使用机器学习方法预测深井泵性能。

Predicting deep well pump performance with machine learning methods during hydraulic head changes.

作者信息

Orhan Nuri

机构信息

Selçuk University, Faculty of Agriculture, Department of Agricultural Machinery and Technology Engineering, 42140, Konya, Turkiye.

出版信息

Heliyon. 2024 May 17;10(11):e31505. doi: 10.1016/j.heliyon.2024.e31505. eCollection 2024 Jun 15.

Abstract

In this study, machine learning techniques were employed to estimate and predict the system efficiency of a pumping plant at various hydraulic head levels. The measured parameters, including flow rate, outlet pressure, drawdown, and power, were used for estimating the system efficiency. Two approaches, Approach-I and Approach-II, were utilized. Approach-I incorporated additional parameters such as hydraulic head, drawdown, flow, power, and outlet pressure, while Approach-II focused solely on hydraulic head, outlet pressure, and power. Seven machine learning algorithms were employed to model and predict the efficiency of the pumping plant. The decrease in the hydraulic head by 125 cm resulted in a reduction in the pump system efficiency by 6.45 %, 8.94 %, and 13.8 % at flow rates of 40, 50, and 60 m h, respectively. Among the algorithms used in Approach-I, the artificial neural network, support vector machine regression, and lasso regression exhibited the highest performance, with R values of 0.995, 0.987, and 0.985, respectively. The corresponding RMSE values for these algorithms were 0.13 %, 0.23 %, and 0.22 %, while the MAE values were 0.11 %, 0.2 %, and 0.32 %, and the MAPE values were 0.22 %, 0.5 %, and 0.46.% In Approach-II, the artificial neural network model once again demonstrated the best performance with an R value of 0.996, followed by the support vector machine regression (R = 0.988) and the decision tree regression (R = 0.981). Overall, the artificial neural network model proved to be the most effective in both approaches. These findings highlight the potential of machine learning techniques in predicting the efficiency of pumping plant systems.

摘要

在本研究中,采用机器学习技术来估计和预测抽水站在不同水头水平下的系统效率。所测量的参数,包括流量、出口压力、水位下降和功率,被用于估计系统效率。采用了两种方法,方法一和方法二。方法一纳入了诸如水头、水位下降、流量、功率和出口压力等额外参数,而方法二则仅关注水头、出口压力和功率。使用了七种机器学习算法来建模和预测抽水站的效率。水头下降125厘米导致在流量分别为40、50和60立方米/小时时,泵系统效率分别降低6.45%、8.94%和13.8%。在方法一中使用的算法中,人工神经网络、支持向量机回归和套索回归表现出最高性能,R值分别为0.995、0.987和0.985。这些算法对应的均方根误差值分别为0.13%、0.23%和0.22%,平均绝对误差值分别为0.11%、0.2%和0.32%,平均绝对百分比误差值分别为0.22%、0.5%和0.46%。在方法二中,人工神经网络模型再次表现出最佳性能,R值为0.996,其次是支持向量机回归(R = 0.988)和决策树回归(R = 0.981)。总体而言,人工神经网络模型在两种方法中都被证明是最有效的。这些发现突出了机器学习技术在预测抽水站系统效率方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc1d/11140612/c32b70411045/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验