Materials Science and Engineering Program, Department of Mechanical Engineering, Department of Electrical Engineering, University of California, Riverside, CA 92521, USA.
Small. 2013 Nov 11;9(21):3714-21. doi: 10.1002/smll.201300326. Epub 2013 May 6.
Rapid charging and discharging supercapacitors are promising alternative energy storage systems for applications such as portable electronics and electric vehicles. Integration of pseudocapacitive metal oxides with single-structured materials has received a lot of attention recently due to their superior electrochemical performance. In order to realize high energy-density supercapacitors, a simple and scalable method is developed to fabricate a graphene/MWNT/MnO2 nanowire (GMM) hybrid nanostructured foam, via a two-step process. The 3D few-layer graphene/MWNT (GM) architecture is grown on foamed metal foils (nickel foam) via ambient pressure chemical vapor deposition. Hydrothermally synthesized α-MnO2 nanowires are conformally coated onto the GM foam by a simple bath deposition. The as-prepared hierarchical GMM foam yields a monographical graphene foam conformally covered with an intertwined, densely packed CNT/MnO2 nanowire nanocomposite network. Symmetrical electrochemical capacitors (ECs) based on GMM foam electrodes show an extended operational voltage window of 1.6 V in aqueous electrolyte. A superior energy density of 391.7 Wh kg(-1) is obtained for the supercapacitor based on the GMM foam, which is much higher than ECs based on GM foam only (39.72 Wh kg(-1) ). A high specific capacitance (1108.79 F g(-1) ) and power density (799.84 kW kg(-1) ) are also achieved. Moreover, the great capacitance retention (97.94%) after 13 000 charge-discharge cycles and high current handability demonstrate the high stability of the electrodes of the supercapacitor. These excellent performances enable the innovative 3D hierarchical GMM foam to serve as EC electrodes, resulting in energy-storage devices with high stability and power density in neutral aqueous electrolyte.
快速充放电超级电容器作为一种有前途的储能系统,在便携式电子设备和电动汽车等领域得到了广泛的应用。由于具有优异的电化学性能,将赝电容金属氧化物与单一结构材料集成引起了人们的极大关注。为了实现高能量密度超级电容器,开发了一种简单且可扩展的方法,通过两步法制备石墨烯/多壁碳纳米管/二氧化锰(GMM)纳米线杂化纳米结构泡沫。通过常压化学气相沉积在泡沫金属箔(镍箔)上生长三维少层石墨烯/多壁碳纳米管(GM)结构。水热合成的α-MnO2纳米线通过简单的浴沉积在 GM 泡沫上进行共形涂覆。所制备的分级 GMM 泡沫在单原子层石墨烯泡沫上产生了相互交织的、密集堆积的 CNT/MnO2纳米线纳米复合材料网络。基于 GMM 泡沫电极的对称电化学电容器(EC)在水性电解质中显示出 1.6 V 的扩展工作电压窗口。基于 GMM 泡沫的超级电容器的能量密度达到 391.7 Wh kg-1,远高于仅基于 GM 泡沫的 EC(39.72 Wh kg-1)。还实现了高比电容(1108.79 F g-1)和功率密度(799.84 kW kg-1)。此外,经过 13000 次充放电循环后电容保持率(97.94%)高,大电流处理能力强,证明了超级电容器电极的高稳定性。这些优异的性能使创新的 3D 分级 GMM 泡沫成为 EC 电极,从而在中性水性电解质中实现了具有高稳定性和功率密度的储能器件。