Suppr超能文献

拜氏不动杆菌ADP1中转录交叉调控的表征与建模

Characterization and modeling of transcriptional cross-regulation in Acinetobacter baylyi ADP1.

作者信息

Zhang Dayi, Zhao Yun, He Yi, Wang Yun, Zhao Yiyu, Zheng Yi, Wei Xia, Zhang Litong, Li Yuzhen, Jin Tao, Wu Lin, Wang Hui, Davison Paul A, Xu Junguang, Huang Wei E

机构信息

Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK.

出版信息

ACS Synth Biol. 2012 Jul 20;1(7):274-83. doi: 10.1021/sb3000244. Epub 2012 Jun 18.

Abstract

Synthetic biology involves reprogramming and engineering of regulatory genes in innovative ways for the implementation of novel tasks. Transcriptional gene regulation systems induced by small molecules in prokaryotes provide a rich source for logic gates. Cross-regulation, whereby a promoter is activated by different molecules or different promoters are activated by one molecule, can be used to design an OR-gate and achieve cross-talk between gene networks in cells. Acinetobacter baylyi ADP1 is naturally transformable, readily editing its chromosomal DNA, which makes it a convenient chassis for synthetic biology. The catabolic genes for salicylate, benzoate, and catechol metabolism are located within a supraoperonic cluster (-sal-are-ben-cat-) in the chromosome of A. baylyi ADP1, which are separately regulated by LysR-type transcriptional regulators (LTTRs). ADP1-based biosensors were constructed in which salA, benA, and catB were fused with a reporter gene cassette luxCDABE under the separate control of SalR, BenM, and CatM regulators. Salicylate, benzoate, catechol, and associated metabolites were found to mediate cross-regulation among sal, ben, and cat operons. A new mathematical model was developed by considering regulator-inducer binding and promoter activation as two separate steps. This model fits the experimental data well and is shown to predict cross-regulation performance.

摘要

合成生物学涉及以创新方式对调控基因进行重新编程和工程改造,以实现新的任务。原核生物中小分子诱导的转录基因调控系统为逻辑门提供了丰富的来源。交叉调控,即一个启动子由不同分子激活或不同启动子由一个分子激活,可用于设计或门并实现细胞中基因网络之间的串扰。拜氏不动杆菌ADP1具有天然可转化性,能轻松编辑其染色体DNA,这使其成为合成生物学的便捷底盘。水杨酸盐、苯甲酸盐和儿茶酚代谢的分解代谢基因位于拜氏不动杆菌ADP1染色体中的一个超操纵子簇(-sal-are-ben-cat-)内,它们分别由LysR型转录调节因子(LTTRs)调控。构建了基于ADP1的生物传感器,其中salA、benA和catB在SalR、BenM和CatM调节因子的单独控制下与报告基因盒luxCDABE融合。发现水杨酸盐、苯甲酸盐、儿茶酚及相关代谢物介导了sal、ben和cat操纵子之间的交叉调控。通过将调节因子-诱导物结合和启动子激活视为两个独立步骤,开发了一个新的数学模型。该模型与实验数据拟合良好,并显示出可预测交叉调控性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验