Suppr超能文献

在 和 SimCells 中开发阿司匹林诱导型生物传感器。

Development of Aspirin-Inducible Biosensors in and SimCells.

机构信息

Department of Engineering Science, University of Oxford, Oxford, United Kingdom.

Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, People's Republic of China.

出版信息

Appl Environ Microbiol. 2019 Mar 6;85(6). doi: 10.1128/AEM.02959-18. Print 2019 Mar 15.

Abstract

A simple aspirin-inducible system has been developed and characterized in by employing the promoter and SalR regulation system originally from ADP1. Mutagenesis at the DNA binding domain (DBD) and chemical recognition domain (CRD) of the SalR protein in ADP1 suggests that the effector-free form, SalR, can compete with the effector-bound form, SalR, binding the promoter and repressing gene transcription. The induction of the promoter was compared in two different gene circuit designs: a simple regulation system (SRS) and positive autoregulation (PAR). Both regulatory circuits were induced in a dose-dependent manner in the presence of 0.05 to 10 µM aspirin. Overexpression of SalR in the SRS circuit reduced both baseline leakiness and the strength of the promoter. The PAR circuit forms a positive feedback loop that fine-tunes the level of SalR. A mathematical simulation based on the SalR/SalR competitive binding model not only fit the observed experimental results in SRS and PAR circuits but also predicted the performance of a new gene circuit design for which weak expression of SalR in the SRS circuit should significantly improve induction strength. The experimental result is in good agreement with this prediction, validating the SalR/SalR competitive binding model. The aspirin-inducible systems were also functional in probiotic strain Nissle 1917 and SimCells produced from MC1000 These well-characterized and modularized aspirin-inducible gene circuits would be useful biobricks for synthetic biology. An aspirin-inducible SalR/ regulation system, originally from ADP1, has been designed for strains. SalR is a typical LysR-type transcriptional regulator (LTTR) family protein and activates the promoter in the presence of aspirin or salicylate in the range of 0.05 to 10 µM. The experimental results and mathematical simulations support the competitive binding model of the SalR/ regulation system in which SalR competes with SalR to bind the promoter and affect gene transcription. The competitive binding model successfully predicted that weak SalR expression would significantly improve the inducible strength of the SalR/ regulation system, which is confirmed by the experimental results. This provides an important mechanism model to fine-tune transcriptional regulation of the LTTR family, which is the largest family of transcriptional regulators in the prokaryotic kingdom. In addition, the SalR/ regulation system was also functional in probiotic strain Nissle 1917 and minicell-derived SimCells, which would be a useful biobrick for environmental and medical applications.

摘要

由 原核表达载体、SalR 调控系统及启动子构建了一个简单的阿司匹林诱导系统,并对其进行了特征描述。对 ADP1 中 SalR 蛋白的 DNA 结合域(DBD)和化学识别域(CRD)进行诱变,结果表明效应物非结合态 SalR 可以与效应物结合态 SalR 竞争结合 启动子,从而抑制基因转录。在两种不同的基因回路设计中比较了 启动子的诱导:简单调控系统(SRS)和正反馈调控(PAR)。在 0.05 到 10 μM 阿司匹林存在的情况下,两种调控回路都呈剂量依赖性诱导。在 SRS 回路中过表达 SalR 会降低 启动子的本底渗漏和强度。PAR 回路形成正反馈回路,可微调 SalR 的水平。基于 SalR/SalR 竞争结合模型的数学模拟不仅拟合了 SRS 和 PAR 回路中的观察实验结果,而且还预测了一个新的基因回路设计的性能,其中在 SRS 回路中弱表达 SalR 应该会显著提高诱导强度。实验结果与该预测结果吻合良好,验证了 SalR/SalR 竞争结合模型。阿司匹林诱导系统在益生菌菌株 Nissle 1917 和 SimCells 中也具有功能,SimCells 是由 MC1000 构建的。这些经过充分表征和模块化的阿司匹林诱导基因回路将成为合成生物学有用的生物积木。一个源自 ADP1 的阿司匹林诱导 SalR/调控系统已被设计用于 菌株。SalR 是一种典型的 LysR 型转录调控因子(LTTR)家族蛋白,在 0.05 到 10 μM 的范围内,SalR 可在阿司匹林或水杨酸盐存在的情况下激活 启动子。实验结果和数学模拟支持 SalR/调控系统的竞争结合模型,该模型中 SalR 与 SalR 竞争结合 启动子并影响基因转录。竞争结合模型成功预测,弱 SalR 表达会显著提高 SalR/调控系统的诱导强度,这一预测得到了实验结果的证实。这为 LTTR 家族的转录调控提供了一个重要的机制模型,LTTR 是原核生物中最大的转录调控因子家族。此外,SalR/调控系统在益生菌菌株 Nissle 1917 和由微细胞衍生的 SimCells 中也具有功能,这将成为环境和医学应用的有用生物积木。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f258/6414386/8bb9c84309bf/AEM.02959-18-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验