Suppr超能文献

临床免疫学和微生物学领域的大学生解决问题的能力:用评分标准和人工神经网络技术对策略进行分类

Problem-solving skills among precollege students in clinical immunology and microbiology: classifying strategies with a rubric and artificial neural network technology.

作者信息

Kanowith-Klein S, Stave M, Stevens R, Casillas A M

机构信息

Department of Microbiology and Immunology and.

出版信息

Microbiol Educ. 2001 May;2:25-33. doi: 10.1128/me.2.1.25-33.2001.

Abstract

Educators emphasize the importance of problem solving that enables students to apply current knowledge and understanding in new ways to previously unencountered situations. Yet few methods are available to visualize and then assess such skills in a rapid and efficient way. Using a software system that can generate a picture (i.e., map) of students' strategies in solving problems, we investigated methods to classify problem-solving strategies of high school students who were studying infectious and noninfectious diseases. Using maps that indicated items students accessed to solve a software simulation as well as the sequence in which items were accessed, we developed a rubric to score the quality of the student performances and also applied artificial neural network technology to cluster student performances into groups of related strategies. Furthermore, we established that a relationship existed between the rubric and neural network results, suggesting that the quality of a problem-solving strategy could be predicted from the cluster of performances in which it was assigned by the network. Using artificial neural networks to assess students' problem-solving strategies has the potential to permit the investigation of the problem-solving performances of hundreds of students at a time and provide teachers with a valuable intervention tool capable of identifying content areas in which students have specific misunderstandings, gaps in learning, or misconceptions.

摘要

教育工作者强调解决问题的重要性,这能使学生以新的方式将当前的知识和理解应用于以前未曾遇到的情况。然而,几乎没有什么方法可以快速有效地可视化并评估这些技能。我们使用一个能够生成学生解决问题策略图片(即地图)的软件系统,研究了对学习传染病和非传染病的高中生解决问题策略进行分类的方法。利用显示学生为解决软件模拟而访问的项目以及访问项目顺序的地图,我们制定了一个评分标准来对学生表现的质量进行评分,并应用人工神经网络技术将学生表现聚类为相关策略组。此外,我们确定评分标准与神经网络结果之间存在关联,这表明可以从网络分配其所属的表现聚类中预测解决问题策略的质量。使用人工神经网络评估学生的解决问题策略有可能一次对数百名学生的解决问题表现进行调查,并为教师提供一个有价值的干预工具,能够识别学生存在特定误解、学习差距或错误观念的内容领域。

相似文献

本文引用的文献

8
Neural computation in medicine.医学中的神经计算
Artif Intell Med. 1993 Apr;5(2):143-57. doi: 10.1016/0933-3657(93)90014-t.
10
Evaluating preclinical medical students by using computer-based problem-solving examinations.
Acad Med. 1989 Nov;64(11):685-7. doi: 10.1097/00001888-198911000-00018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验