Suppr超能文献

在现代 CPU 上进行性能优化的临床调强放疗计划。

Performance-optimized clinical IMRT planning on modern CPUs.

机构信息

Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.

出版信息

Phys Med Biol. 2013 Jun 7;58(11):3705-15. doi: 10.1088/0031-9155/58/11/3705. Epub 2013 May 8.

Abstract

Intensity modulated treatment plan optimization is a computationally expensive task. The feasibility of advanced applications in intensity modulated radiation therapy as every day treatment planning, frequent re-planning for adaptive radiation therapy and large-scale planning research severely depends on the runtime of the plan optimization implementation. Modern computational systems are built as parallel architectures to yield high performance. The use of GPUs, as one class of parallel systems, has become very popular in the field of medical physics. In contrast we utilize the multi-core central processing unit (CPU), which is the heart of every modern computer and does not have to be purchased additionally. In this work we present an ultra-fast, high precision implementation of the inverse plan optimization problem using a quasi-Newton method on pre-calculated dose influence data sets. We redefined the classical optimization algorithm to achieve a minimal runtime and high scalability on CPUs. Using the proposed methods in this work, a total plan optimization process can be carried out in only a few seconds on a low-cost CPU-based desktop computer at clinical resolution and quality. We have shown that our implementation uses the CPU hardware resources efficiently with runtimes comparable to GPU implementations, at lower costs.

摘要

调强治疗计划的优化是一项计算成本很高的任务。在调强放射治疗中,先进应用的可行性,如日常治疗计划、频繁的自适应放射治疗重新计划和大规模计划研究,严重依赖于计划优化实施的运行时间。现代计算系统被构建为并行架构,以获得高性能。作为一类并行系统的 GPU 在医学物理学领域已经非常流行。相比之下,我们利用多核中央处理单元(CPU),它是每台现代计算机的核心,不需要额外购买。在这项工作中,我们使用拟牛顿法在预先计算的剂量影响数据集上,提出了一种超快、高精度的逆计划优化问题的实现方法。我们重新定义了经典的优化算法,以实现最小的运行时间和在 CPU 上的高可扩展性。使用这项工作中提出的方法,在临床分辨率和质量的低成本基于 CPU 的台式计算机上,总计划优化过程可以在几秒钟内完成。我们已经表明,我们的实现有效地利用了 CPU 硬件资源,运行时间与 GPU 实现相当,但成本更低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验