Instituto Cajal, Consejo Superior de Investigaciones Científicas Madrid, Spain.
Front Cell Neurosci. 2013 Apr 29;7:51. doi: 10.3389/fncel.2013.00051. eCollection 2013.
In vivo imaging is one of the ultimate and fundamental approaches for the study of the brain. Two-photon laser scanning microscopy (2PLSM) constitutes the state-of-the-art technique in current neuroscience to address questions regarding brain cell structure, development and function, blood flow regulation and metabolism. This technique evolved from laser scanning confocal microscopy (LSCM), which impacted the field with a major improvement in image resolution of live tissues in the 1980s compared to widefield microscopy. While nowadays some of the unparalleled features of 2PLSM make it the tool of choice for brain studies in vivo, such as the possibility to image deep within a tissue, LSCM can still be useful in this matter. Here we discuss the validity and limitations of LSCM and provide a guide to perform high-resolution in vivo imaging of the brain of live rodents with minimal mechanical disruption employing LSCM. We describe the surgical procedure and experimental setup that allowed us to record intracellular calcium variations in astrocytes evoked by sensory stimulation, and to monitor intact neuronal dendritic spines and astrocytic processes as well as blood vessel dynamics. Therefore, in spite of certain limitations that need to be carefully considered, LSCM constitutes a useful, convenient, and affordable tool for brain studies in vivo.
在体成像技术是研究大脑的最终和最基本方法之一。双光子激光扫描显微镜(2PLSM)是当前神经科学领域的前沿技术,可用于解决有关脑细胞结构、发育和功能、血流调节和代谢的问题。该技术源自激光扫描共聚焦显微镜(LSCM),与宽场显微镜相比,LSCM 在 20 世纪 80 年代将活组织的图像分辨率提高到了一个新的水平,对该领域产生了重大影响。虽然现在 2PLSM 的一些无与伦比的特点使其成为在体脑研究的首选工具,例如在组织内深处成像的可能性,但 LSCM 在这方面仍然很有用。在这里,我们讨论了 LSCM 的有效性和局限性,并提供了一个指南,以使用 LSCM 对活体啮齿动物的大脑进行最小机械干扰的高分辨率在体成像。我们描述了手术程序和实验设置,这些程序和设置使我们能够记录感觉刺激引起的星形胶质细胞内钙变化,并监测完整的神经元树突棘和星形胶质细胞过程以及血管动力学。因此,尽管需要仔细考虑某些限制,但 LSCM 仍然是一种有用、方便且经济实惠的在体脑研究工具。