Suppr超能文献

使用受激发射损耗双光子激光扫描显微镜对脑切片进行超分辨率成像。

Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy.

作者信息

Ding Jun B, Takasaki Kevin T, Sabatini Bernardo L

机构信息

Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Neuron. 2009 Aug 27;63(4):429-37. doi: 10.1016/j.neuron.2009.07.011.

Abstract

Two-photon laser scanning microscopy (2PLSM) has allowed unprecedented fluorescence imaging of neuronal structure and function within neural tissue. However, the resolution of this approach is poor compared to that of conventional confocal microscopy. Here, we demonstrate supraresolution 2PLSM within brain slices. Imaging beyond the diffraction limit is accomplished by using near-infrared (NIR) lasers for both pulsed two-photon excitation and continuous wave stimulated emission depletion (STED). Furthermore, we demonstrate that Alexa Fluor 594, a bright fluorophore commonly used for both live cell and fixed tissue fluorescence imaging, is suitable for STED 2PLSM. STED 2PLSM supraresolution microscopy achieves approximately 3-fold improvement in resolution in the radial direction over conventional 2PLSM, revealing greater detail in the structure of dendritic spines located approximately 100 microns below the surface of brain slices. Further improvements in resolution are theoretically achievable, suggesting that STED 2PLSM will permit nanoscale imaging of neuronal structures located in relatively intact brain tissue.

摘要

双光子激光扫描显微镜(2PLSM)使人们能够对神经组织内的神经元结构和功能进行前所未有的荧光成像。然而,与传统共聚焦显微镜相比,这种方法的分辨率较差。在此,我们展示了脑片内的超分辨率2PLSM。通过使用近红外(NIR)激光进行脉冲双光子激发和连续波受激发射损耗(STED)来实现超越衍射极限的成像。此外,我们证明了Alexa Fluor 594(一种常用于活细胞和固定组织荧光成像的明亮荧光团)适用于STED 2PLSM。STED 2PLSM超分辨率显微镜在径向方向上的分辨率比传统2PLSM提高了约3倍,揭示了位于脑片表面以下约100微米处的树突棘结构的更多细节。理论上可以进一步提高分辨率,这表明STED 2PLSM将允许对位于相对完整脑组织中的神经元结构进行纳米级成像。

相似文献

2
Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy.
Biophys J. 2013 Feb 19;104(4):770-7. doi: 10.1016/j.bpj.2012.12.053.
3
Two-photon excitation STED microscopy in two colors in acute brain slices.
Biophys J. 2013 Feb 19;104(4):778-85. doi: 10.1016/j.bpj.2012.12.054.
4
Super-resolution STED microscopy in live brain tissue.
Neurobiol Dis. 2021 Aug;156:105420. doi: 10.1016/j.nbd.2021.105420. Epub 2021 Jun 5.
5
Fast scanning STED and two-photon fluorescence excitation microscopy with continuous wave beam.
J Microsc. 2012 Mar;245(3):225-8. doi: 10.1111/j.1365-2818.2011.03577.x. Epub 2011 Dec 15.
6
How to build a two-photon microscope with a confocal scan head.
Cold Spring Harb Protoc. 2013 Jun 1;2013(6):588-92. doi: 10.1101/pdb.ip075135.
7
Fluorescence microscopy: a concise guide to current imaging methods.
Curr Protoc Neurosci. 2010 Jan;Chapter 2:Unit2.1. doi: 10.1002/0471142301.ns0201s50.
8
STED microscopy for nanoscale imaging in living brain slices.
Methods. 2015 Oct 15;88:57-66. doi: 10.1016/j.ymeth.2015.06.006. Epub 2015 Jun 9.
9
Evaluation of cranial window types for in vivo two-photon imaging of brain microstructures.
Microscopy (Oxf). 2014 Feb;63(1):53-63. doi: 10.1093/jmicro/dft043. Epub 2013 Nov 8.
10
Two-photon excitation STED microscopy.
Opt Express. 2009 Aug 17;17(17):14567-73. doi: 10.1364/oe.17.014567.

引用本文的文献

1
SpyDen: simplifying molecular and structural analysis across spines and dendrites.
Bioinformatics. 2025 Jul 1;41(7). doi: 10.1093/bioinformatics/btaf339.
2
Impact of a tilted coverslip on two-photon and STED microscopy.
Biomed Opt Express. 2024 Jan 16;15(2):743-752. doi: 10.1364/BOE.510512. eCollection 2024 Feb 1.
3
Commercially derived versatile optical architecture for two-photon STED, wavelength mixing and label-free microscopy.
Biomed Opt Express. 2022 Feb 14;13(3):1410-1429. doi: 10.1364/BOE.444525. eCollection 2022 Mar 1.
4
Sample Preparation for Multicolor STED Microscopy.
Methods Mol Biol. 2022;2440:253-270. doi: 10.1007/978-1-0716-2051-9_15.
5
From whole organism to ultrastructure: progress in axonal imaging for decoding circuit development.
Development. 2021 Sep 15;148(18). doi: 10.1242/dev.199717. Epub 2021 Jul 30.
6
Aberration correction in stimulated emission depletion microscopy to increase imaging depth in living brain tissue.
Neurophotonics. 2021 Jul;8(3):035001. doi: 10.1117/1.NPh.8.3.035001. Epub 2021 Jun 14.
7
Efficient two-photon excitation stimulated emission depletion nanoscope exploiting spatiotemporal information.
Neurophotonics. 2019 Oct;6(4):045004. doi: 10.1117/1.NPh.6.4.045004. Epub 2019 Nov 5.
8
Strategies to maximize performance in STimulated Emission Depletion (STED) nanoscopy of biological specimens.
Methods. 2020 Mar 1;174:27-41. doi: 10.1016/j.ymeth.2019.07.019. Epub 2019 Jul 22.
9
Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor.
Sci Adv. 2019 Jul 10;5(7):eaaw3108. doi: 10.1126/sciadv.aaw3108. eCollection 2019 Jul.
10
Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles.
Nat Commun. 2018 Aug 17;9(1):3290. doi: 10.1038/s41467-018-05842-w.

本文引用的文献

2
Super-resolution video microscopy of live cells by structured illumination.
Nat Methods. 2009 May;6(5):339-42. doi: 10.1038/nmeth.1324. Epub 2009 Apr 26.
3
Activation of CaMKII in single dendritic spines during long-term potentiation.
Nature. 2009 Mar 19;458(7236):299-304. doi: 10.1038/nature07842.
4
Direct observation of the nanoscale dynamics of membrane lipids in a living cell.
Nature. 2009 Feb 26;457(7233):1159-62. doi: 10.1038/nature07596. Epub 2008 Dec 21.
6
Spine neck plasticity controls postsynaptic calcium signals through electrical compartmentalization.
J Neurosci. 2008 Dec 10;28(50):13457-66. doi: 10.1523/JNEUROSCI.2702-08.2008.
7
Live-cell imaging of dendritic spines by STED microscopy.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18982-7. doi: 10.1073/pnas.0810028105. Epub 2008 Nov 21.
8
Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines.
Science. 2008 Mar 21;319(5870):1683-7. doi: 10.1126/science.1152864. Epub 2008 Feb 28.
9
Video-rate far-field optical nanoscopy dissects synaptic vesicle movement.
Science. 2008 Apr 11;320(5873):246-9. doi: 10.1126/science.1154228. Epub 2008 Feb 21.
10
Balancing structure and function at hippocampal dendritic spines.
Annu Rev Neurosci. 2008;31:47-67. doi: 10.1146/annurev.neuro.31.060407.125646.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验