Suppr超能文献

生物分子冠在纳米颗粒摄取过程中被保留下来,并保护细胞免受阳离子纳米颗粒诱导的损伤,直到在溶酶体中降解。

The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes.

机构信息

Centre for BioNano Interactions, School of Chemistry and Chemical Biology & UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; Department of Cellular and Molecular Biology, CIB, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain.

出版信息

Nanomedicine. 2013 Nov;9(8):1159-68. doi: 10.1016/j.nano.2013.04.010. Epub 2013 May 7.

Abstract

UNLABELLED

Nanoparticles have unique capacities of interacting with the cellular machinery and entering cells. To be able to exploit this potential, it is essential to understand what controls the interactions at the interface between nanoparticles and cells: it is now established that nanoparticles in biological media are covered by proteins and other biomolecules forming a "corona" on the nanoparticle surface, which confers a new identity to the nanoparticles. By labelling the proteins of the serum, using positively-charged polystyrene, we now show that this adsorbed layer is strong enough to be retained on the nanoparticles as they enter cells and is trafficked to the lysosomes on the nanoparticles. There, the corona is degraded and this is followed by lysosomal damage, leading to cytosolic release of lysosomal content, and ultimately apoptosis. Thus the corona protects the cells from the damage induced by the bare nanoparticle surface until enzymatically cleared in the lysosomes.

FROM THE CLINICAL EDITOR

This study investigates the effects of protein corona that normally forms on the surface of nanoparticles during in vivo use, describing the steps of intracellular processing of such particles, to enhance our understanding of how these particles interact with the cellular machinery.

摘要

未加标签

纳米颗粒具有与细胞机制相互作用并进入细胞的独特能力。为了能够利用这种潜力,了解控制纳米颗粒与细胞界面相互作用的因素至关重要:现在已经确定,生物介质中的纳米颗粒表面被蛋白质和其他生物分子覆盖,形成纳米颗粒表面的“冠”,赋予纳米颗粒新的特性。通过使用带正电荷的聚苯乙烯对血清蛋白进行标记,我们现在表明,当纳米颗粒进入细胞时,吸附层的强度足以保留在纳米颗粒上,并被运输到纳米颗粒的溶酶体中。在那里,冠被降解,随后溶酶体受损,导致溶酶体内容物向细胞质释放,并最终导致细胞凋亡。因此,在被溶酶体中的酶清除之前,冠保护细胞免受裸纳米颗粒表面诱导的损伤。

临床编辑按

本研究调查了在体内使用过程中通常在纳米颗粒表面形成的蛋白质冠的影响,描述了这种颗粒的细胞内处理步骤,以增强我们对这些颗粒如何与细胞机制相互作用的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验