Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
Cell Rep. 2013 May 30;3(5):1703-13. doi: 10.1016/j.celrep.2013.04.010. Epub 2013 May 9.
RNA-protein (RNP) interactions generally are required for RNA function. At least 5% of human genes code for RNA-binding proteins. Whereas many approaches can identify the RNA partners for a specific protein, finding the protein partners for a specific RNA is difficult. We present a machine-learning method that scores a protein's binding potential for an RNA structure by utilizing the chemical context profiles of the interface from known RNP structures. Our approach is applicable even when only a single RNP structure is available. We examined 801 mammalian proteins and find that 37 (4.6%) potentially bind transfer RNA (tRNA). Most are enzymes involved in cellular processes unrelated to translation and were not known to interact with RNA. We experimentally tested six positive and three negative predictions for tRNA binding in vivo, and all nine predictions were correct. Our computational approach provides a powerful complement to experiments in discovering new RNPs.
RNA 与蛋白质(RNP)之间的相互作用通常是 RNA 发挥功能所必需的。至少有 5%的人类基因编码 RNA 结合蛋白。虽然有许多方法可以识别特定蛋白质的 RNA 伴侣,但找到特定 RNA 的蛋白质伴侣却很困难。我们提出了一种机器学习方法,通过利用已知 RNP 结构的界面化学环境轮廓来对蛋白质与 RNA 结构的结合潜力进行评分。即使只有一个 RNP 结构可用,我们的方法也适用。我们研究了 801 种哺乳动物蛋白质,发现其中 37 种(4.6%)可能与转移 RNA(tRNA)结合。大多数是参与与翻译无关的细胞过程的酶,以前不知道与 RNA 相互作用。我们在体内对 tRNA 结合的六个阳性和三个阴性预测进行了实验测试,所有九个预测都是正确的。我们的计算方法为发现新的 RNP 提供了一种强大的实验补充手段。