Suppr超能文献

宿主对植入大脑的神经电极上微凝胶涂层的反应。

Host response to microgel coatings on neural electrodes implanted in the brain.

作者信息

Gutowski Stacie M, Templeman Kellie L, South Antoinette B, Gaulding Jeffrey C, Shoemaker James T, LaPlaca Michelle C, Bellamkonda Ravi V, Lyon L Andrew, García Andrés J

机构信息

Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30332-0363; Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332-0363.

出版信息

J Biomed Mater Res A. 2014 May;102(5):1486-99. doi: 10.1002/jbm.a.34799. Epub 2013 Jun 25.

Abstract

The performance of neural electrodes implanted in the brain is often limited by host response in the surrounding brain tissue, including astrocytic scar formation, neuronal cell death, and inflammation around the implant. We applied conformal microgel coatings to silicon neural electrodes and examined host responses to microgel-coated and uncoated electrodes following implantation in the rat brain. In vitro analyses demonstrated significantly reduced astrocyte and microglia adhesion to microgel-coated electrodes compared to uncoated controls. Microgel-coated and uncoated electrodes were implanted in the rat brain cortex and the extent of activated microglia and astrocytes as well as neuron density around the implant were evaluated at 1, 4, and 24 weeks postimplantation. Microgel coatings reduced astrocytic recruitment around the implant at later time points. However, microglial response indicated persistence of inflammation in the area around the electrode. Neuronal density around the implanted electrodes was also lower for both implant groups compared to the uninjured control. These results demonstrate that microgel coatings do not significantly improve host responses to implanted neural electrodes and underscore the need for further improvements in implantable materials.

摘要

植入大脑的神经电极的性能常常受到周围脑组织宿主反应的限制,包括星形胶质细胞瘢痕形成、神经元细胞死亡以及植入物周围的炎症。我们将保形微凝胶涂层应用于硅神经电极,并在大鼠大脑中植入后检查了宿主对微凝胶涂层电极和未涂层电极的反应。体外分析表明,与未涂层的对照相比,星形胶质细胞和小胶质细胞对微凝胶涂层电极的粘附显著减少。将微凝胶涂层电极和未涂层电极植入大鼠大脑皮层,并在植入后1周、4周和24周评估植入物周围活化的小胶质细胞和星形胶质细胞的程度以及神经元密度。微凝胶涂层在后期时间点减少了植入物周围星形胶质细胞的募集。然而,小胶质细胞反应表明电极周围区域存在持续的炎症。与未受伤的对照相比,两个植入组植入电极周围的神经元密度也较低。这些结果表明,微凝胶涂层并不能显著改善宿主对植入神经电极的反应,并强调了对可植入材料进一步改进的必要性。

相似文献

1
Host response to microgel coatings on neural electrodes implanted in the brain.
J Biomed Mater Res A. 2014 May;102(5):1486-99. doi: 10.1002/jbm.a.34799. Epub 2013 Jun 25.
2
Protease-degradable PEG-maleimide coating with on-demand release of IL-1Ra to improve tissue response to neural electrodes.
Biomaterials. 2015 Mar;44:55-70. doi: 10.1016/j.biomaterials.2014.12.009. Epub 2015 Jan 12.
4
Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes.
Brain Res. 2007 May 7;1148:15-27. doi: 10.1016/j.brainres.2007.02.024. Epub 2007 Feb 22.
5
Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays.
J Neural Eng. 2006 Dec;3(4):316-26. doi: 10.1088/1741-2560/3/4/009. Epub 2006 Nov 15.
6
Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy.
Biomaterials. 2017 Jan;113:279-292. doi: 10.1016/j.biomaterials.2016.10.054. Epub 2016 Nov 1.
7
Conducting polymer coated neural recording electrodes.
J Neural Eng. 2013 Feb;10(1):016004. doi: 10.1088/1741-2560/10/1/016004. Epub 2012 Dec 12.
8
Impact of degradable nanowires on long-term brain tissue responses.
J Nanobiotechnology. 2016 Aug 9;14(1):64. doi: 10.1186/s12951-016-0216-7.
9
Electropolymerized Poly(3,4-ethylenedioxythiophene) (PEDOT) Coatings for Implantable Deep-Brain-Stimulating Microelectrodes.
ACS Appl Mater Interfaces. 2019 May 15;11(19):17226-17233. doi: 10.1021/acsami.9b03088. Epub 2019 May 6.
10
Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain.
Biosens Bioelectron. 2020 May 1;155:112096. doi: 10.1016/j.bios.2020.112096. Epub 2020 Feb 18.

引用本文的文献

1
Fabrication and Dose-Response Simulation of Soft Dual-Sided Deep Brain Stimulation Electrode.
Micromachines (Basel). 2025 Aug 18;16(8):945. doi: 10.3390/mi16080945.
2
Deep Brain Stimulation in Advanced Parkinson's Disease: An Uncommon Case of Allergic Encephalitis.
J Mov Disord. 2024 Jul;17(3):345-347. doi: 10.14802/jmd.23237. Epub 2024 Apr 15.
3
Differential expression of genes involved in the chronic response to intracortical microelectrodes.
Acta Biomater. 2023 Oct 1;169:348-362. doi: 10.1016/j.actbio.2023.07.038. Epub 2023 Jul 26.
4
The effect of A1 and A2 reactive astrocyte expression on hydrocephalus shunt failure.
Fluids Barriers CNS. 2022 Sep 28;19(1):78. doi: 10.1186/s12987-022-00367-3.
5
Clickable Biomaterials for Modulating Neuroinflammation.
Int J Mol Sci. 2022 Jul 31;23(15):8496. doi: 10.3390/ijms23158496.
6
7
Engineered Axonal Tracts as "Living Electrodes" for Synaptic-Based Modulation of Neural Circuitry.
Adv Funct Mater. 2018 Mar 21;28(12). doi: 10.1002/adfm.201701183. Epub 2017 Sep 4.
10
Particle Stiffness and Surface Topography Determine Macrophage-Mediated Removal of Surface Adsorbed Particles.
Adv Healthc Mater. 2021 Mar;10(6):e2001667. doi: 10.1002/adhm.202001667. Epub 2021 Jan 12.

本文引用的文献

2
Bioactive anti-inflammatory coating for chronic neural electrodes.
J Biomed Mater Res A. 2012 Jul;100(7):1854-8. doi: 10.1002/jbm.a.34152. Epub 2012 Apr 4.
4
In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes.
J Neural Eng. 2011 Aug;8(4):046010. doi: 10.1088/1741-2560/8/4/046010. Epub 2011 Jun 8.
5
Implant size and fixation mode strongly influence tissue reactions in the CNS.
PLoS One. 2011 Jan 26;6(1):e16267. doi: 10.1371/journal.pone.0016267.
6
A comparison of the tissue response to chronically implanted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex.
Biomaterials. 2010 Dec;31(35):9163-72. doi: 10.1016/j.biomaterials.2010.05.050. Epub 2010 Jun 18.
7
Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces.
Med Biol Eng Comput. 2010 Oct;48(10):945-54. doi: 10.1007/s11517-010-0644-8. Epub 2010 Jun 10.
8
Controlled release nanoparticle-embedded coatings reduce the tissue reaction to neuroprostheses.
J Control Release. 2010 Aug 3;145(3):196-202. doi: 10.1016/j.jconrel.2010.04.025. Epub 2010 May 4.
9
Centrifugal deposition of microgels for the rapid assembly of nonfouling thin films.
ACS Appl Mater Interfaces. 2009 Dec;1(12):2747-54. doi: 10.1021/am9005435.
10
Chronic inflammatory responses to microgel-based implant coatings.
J Biomed Mater Res A. 2010 Jul;94(1):252-8. doi: 10.1002/jbm.a.32669.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验