Serruya Mijail D, Harris James P, Adewole Dayo O, Struzyna Laura A, Burrell Justin C, Nemes Ashley, Petrov Dmitriy, Kraft Reuben H, Chen H Isaac, Wolf John A, Cullen D Kacy
Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA.
Adv Funct Mater. 2018 Mar 21;28(12). doi: 10.1002/adfm.201701183. Epub 2017 Sep 4.
Brain-computer interface and neuromodulation strategies relying on penetrating non-organic electrodes/optrodes are limited by an inflammatory foreign body response that ultimately diminishes performance. A novel "biohybrid" strategy is advanced, whereby living neurons, biomaterials, and microelectrode/optical technology are used together to provide a biologically-based vehicle to probe and modulate nervous-system activity. Microtissue engineering techniques are employed to create axon-based "living electrodes", which are columnar microstructures comprised of neuronal population(s) projecting long axonal tracts within the lumen of a hydrogel designed to chaperone delivery into the brain. Upon microinjection, the axonal segment penetrates to prescribed depth for synaptic integration with local host neurons, with the perikaryal segment remaining externalized below conforming electrical-optical arrays. In this paradigm, only the biological component ultimately remains in the brain, potentially attenuating a chronic foreign-body response. Axon-based living electrodes are constructed using multiple neuronal subtypes, each with differential capacity to stimulate, inhibit, and/or modulate neural circuitry based on specificity uniquely afforded by synaptic integration, yet ultimately computer controlled by optical/electrical components on the brain surface. Current efforts are assessing the efficacy of this biohybrid interface for targeted, synaptic-based neuromodulation, and the specificity, spatial density and long-term fidelity versus conventional microelectronic or optical substrates alone.
依赖穿透性非有机电极/光极的脑机接口和神经调节策略受到炎症性异物反应的限制,这种反应最终会降低性能。一种新型的“生物混合”策略被提出,即活神经元、生物材料和微电极/光学技术共同使用,以提供一种基于生物学的载体来探测和调节神经系统活动。采用微组织工程技术创建基于轴突的“活电极”,它是柱状微结构,由在水凝胶管腔内投射长轴突束的神经元群体组成,该水凝胶旨在护送其进入大脑。微注射后,轴突段穿透到规定深度与局部宿主神经元进行突触整合,而胞体段则留在符合要求的电光阵列下方的外部。在这种模式下,只有生物成分最终留在大脑中,有可能减轻慢性异物反应。基于轴突的活电极是使用多种神经元亚型构建的,每种亚型基于突触整合独特提供的特异性,具有刺激、抑制和/或调节神经回路的不同能力,但最终由大脑表面的光学/电气组件进行计算机控制。目前的工作正在评估这种生物混合接口用于基于突触的靶向神经调节的功效,以及与单独的传统微电子或光学基板相比的特异性、空间密度和长期保真度。