Suppr超能文献

外赋导电机理在聚(ε-己内酯)复合神经界面材料中的渗流现象。

Electrical percolation in extrinsically conducting, poly(ε-decalactone) composite neural interface materials.

机构信息

Centre for Research in Medical Devices, National University of Ireland, Newcastle Road, Galway, H91 W2TY, Ireland.

Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M.Strzody 9, 44-100, Gliwice, Poland.

出版信息

Sci Rep. 2021 Jan 14;11(1):1295. doi: 10.1038/s41598-020-80361-7.

Abstract

By providing a bidirectional communication channel between neural tissues and a biomedical device, it is envisaged that neural interfaces will be fundamental in the future diagnosis and treatment of neurological disorders. Due to the mechanical mismatch between neural tissue and metallic neural electrodes, soft electrically conducting materials are of great benefit in promoting chronic device functionality. In this study, carbon nanotubes (CNT), silver nanowires (AgNW) and poly(hydroxymethyl 3,4-ethylenedioxythiophene) microspheres (MSP) were employed as conducting fillers within a poly(ε-decalactone) (EDL) matrix, to form a soft and electrically conducting composite. The effect of a filler type on the electrical percolation threshold, and composite biocompatibility was investigated in vitro. EDL-based composites exhibited favourable electrochemical characteristics: EDL/CNT-the lowest film resistance (1.2 ± 0.3 kΩ), EDL/AgNW-the highest charge storage capacity (10.7 ± 0.3 mC cm), and EDL/MSP-the highest interphase capacitance (1478.4 ± 92.4 µF cm). All investigated composite surfaces were found to be biocompatible, and to reduce the presence of reactive astrocytes relative to control electrodes. The results of this work clearly demonstrated the ability of high aspect ratio structures to form an extended percolation network within a polyester matrix, resulting in the formulation of composites with advantageous mechanical, electrochemical and biocompatibility properties.

摘要

通过在神经组织和生物医学设备之间提供双向通信通道,预计神经接口将成为未来神经疾病诊断和治疗的基础。由于神经组织和金属神经电极之间存在机械不匹配,因此在促进慢性设备功能方面,柔软的导电材料具有很大的优势。在这项研究中,碳纳米管 (CNT)、银纳米线 (AgNW) 和聚 (3,4-亚乙基二氧噻吩) 微球 (MSP) 被用作聚 (ε-己内酯) (EDL) 基质中的导电填料,以形成柔软且导电的复合材料。研究了填料类型对电渗流阈值和复合材料生物相容性的影响。基于 EDL 的复合材料表现出良好的电化学特性:EDL/CNT-最低的薄膜电阻(1.2±0.3 kΩ),EDL/AgNW-最高的电荷存储容量(10.7±0.3 mC cm),EDL/MSP-最高的界面电容(1478.4±92.4 µF cm)。所有研究的复合表面都被发现是生物相容的,并能减少相对于对照电极的反应性星形胶质细胞的存在。这项工作的结果清楚地表明,高纵横比结构能够在聚酯基质中形成扩展的渗流网络,从而形成具有有利的机械、电化学和生物相容性的复合材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957a/7809477/b469baf732f9/41598_2020_80361_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验