State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
PLoS One. 2013 May 7;8(5):e64346. doi: 10.1371/journal.pone.0064346. Print 2013.
N-ethylmaleimide-sensitive factor (NSF) is a member of the type II AAA+ (ATPase associated with various cellular activities) family. It plays a critical role in intracellular membrane trafficking by disassembling soluble NSF attachment protein receptor (SNARE) complexes. Each NSF protomer consists of an N-terminal domain (N domain) followed by two AAA ATPase domains (D1 and D2) in tandem. The N domain is required for SNARE/α-SNAP binding and the D1 domain accounts for the majority of ATP hydrolysis. Little is known about the role of the N-D1 linker in the NSF function. This study presents detailed mutagenesis analyses of NSF N-D1 linker, dissecting its role in the SNARE disassembly, the SNARE/α-SNAP complex binding, the basal ATPase activity and the SNARE/α-SNAP stimulated ATPase activity. Our results show that the N-terminal region of the N-D1 linker associated mutants cause severe defect in SNARE complex disassembly, but little effects on the SNARE/α-SNAP complex binding, the basal and the SNARE/α-SNAP stimulated ATPase activity, suggesting this region may be involved in the motion transmission from D1 to N domain. Mutating the residues in middle and C-terminal region of the N-D1 linker increases the basal ATPase activity, indicating it may play a role in autoinhibiting NSF activity until it encounters SNARE/α-SNAP complex substrate. Moreover, mutations at the C-terminal sequence GIGG exhibit completely abolished or severely reduced activities of the substrate binding, suggesting that the flexibility of N-D1 linker is critical for the movement of the N domain that is required for the substrate binding. Taken together, these data suggest that the whole N-D1 linker is critical for the biological function of NSF to disassemble SNARE complex substrate with different regions responsible for different roles.
N-乙基马来酰亚胺敏感因子(NSF)是一种 II 型 AAA+(与各种细胞活动相关的 ATP 酶)家族成员。它在细胞内膜运输中起着关键作用,通过分解可溶性 NSF 附着蛋白受体(SNARE)复合物来实现。每个 NSF 原聚体由一个 N 端结构域(N 结构域)和两个串联的 AAA ATP 酶结构域(D1 和 D2)组成。N 结构域是 SNARE/α-SNAP 结合所必需的,而 D1 结构域负责大部分 ATP 水解。关于 NSF 功能中 N-D1 接头的作用知之甚少。本研究对 NSF N-D1 接头进行了详细的突变分析,剖析了其在 SNARE 解体、SNARE/α-SNAP 复合物结合、基础 ATP 酶活性和 SNARE/α-SNAP 刺激的 ATP 酶活性中的作用。我们的结果表明,N-D1 接头的 N 端区域相关突变体导致 SNARE 复合物解体严重缺陷,但对 SNARE/α-SNAP 复合物结合、基础和 SNARE/α-SNAP 刺激的 ATP 酶活性影响很小,表明该区域可能参与了从 D1 到 N 结构域的运动传递。突变 N-D1 接头中间和 C 端区域的残基增加了基础 ATP 酶活性,表明它可能在遇到 SNARE/α-SNAP 复合物底物之前发挥自动抑制 NSF 活性的作用。此外,C 末端序列 GIGG 的突变表现出完全丧失或严重降低的底物结合活性,表明 N-D1 接头的灵活性对于 N 结构域的运动至关重要,而 N 结构域的运动是底物结合所必需的。综上所述,这些数据表明,整个 N-D1 接头对于 NSF 分解 SNARE 复合物底物的生物学功能至关重要,不同区域负责不同的作用。