Suppr超能文献

预测美国县级癌症发病率和发病数。

Predicting county-level cancer incidence rates and counts in the USA.

机构信息

Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MA, 20892, U.S.A.

出版信息

Stat Med. 2013 Sep 30;32(22):3911-25. doi: 10.1002/sim.5833. Epub 2013 May 13.

Abstract

Many countries, including the USA, publish predicted numbers of cancer incidence and death in current and future years for the whole country. These predictions provide important information on the cancer burden for cancer control planners, policymakers and the general public. Based on evidence from several empirical studies, the joinpoint (segmented-line linear regression) model (JPM) has been adopted by the American Cancer Society to estimate the number of new cancer cases in the USA and in individual states since 2007. Recently, cancer incidence in smaller geographic regions such as counties, and local policy makers are increasingly interested with Federal Information Processing Standard code regions. The natural extension is to directly apply the JPM to county-level cancer incidence data. The direct application has several drawbacks and its performance has not been evaluated. To address the concerns, we developed a spatial random-effects JPM for county-level cancer incidence data. The proposed model was used to predict both cancer incidence rates and counts at the county level. The standard JPM and the proposed method were compared through a validation study. The proposed method outperformed the standard JPM for almost all cancer sites, especially for moderate or rare cancer sites and for counties with small population sizes. As an application, we predicted county-level prostate cancer incidence rates and counts for the year 2011 in Connecticut.

摘要

许多国家,包括美国,都会发布本国当前和未来年份癌症发病和死亡的预测数据。这些预测数据为癌症控制规划者、政策制定者和公众提供了有关癌症负担的重要信息。基于多项实证研究的证据,美国癌症协会自 2007 年以来一直采用连接点(分段线性回归)模型(JPM)来估计美国和个别州的新癌症病例数。最近,较小地理区域(如县)的癌症发病率以及地方政策制定者对联邦信息处理标准代码区域的兴趣日益浓厚。自然而然的延伸是将 JPM 直接应用于县级癌症发病率数据。直接应用存在一些缺点,其性能尚未得到评估。为了解决这些问题,我们为县级癌症发病率数据开发了一种空间随机效应 JPM。该模型用于预测县级癌症发病率和发病数。通过验证研究比较了标准 JPM 和建议方法。对于几乎所有癌症部位,特别是对于中度或罕见癌症部位以及人口规模较小的县,建议的方法都优于标准 JPM。作为应用,我们预测了 2011 年康涅狄格州县级前列腺癌的发病率和发病数。

相似文献

1
Predicting county-level cancer incidence rates and counts in the USA.预测美国县级癌症发病率和发病数。
Stat Med. 2013 Sep 30;32(22):3911-25. doi: 10.1002/sim.5833. Epub 2013 May 13.
6
Affluence and Breast Cancer.富裕与乳腺癌
Breast J. 2016 Sep;22(5):564-7. doi: 10.1111/tbj.12630. Epub 2016 Jun 14.

本文引用的文献

4
Projections of the cost of cancer care in the United States: 2010-2020.美国癌症护理成本预测:2010-2020 年。
J Natl Cancer Inst. 2011 Jan 19;103(2):117-28. doi: 10.1093/jnci/djq495. Epub 2011 Jan 12.
8
Cancer statistics, 2009.2009年癌症统计数据。
CA Cancer J Clin. 2009 Jul-Aug;59(4):225-49. doi: 10.3322/caac.20006. Epub 2009 May 27.
10
Lung cancer rate predictions using generalized additive models.使用广义相加模型预测肺癌发病率。
Biostatistics. 2005 Oct;6(4):576-89. doi: 10.1093/biostatistics/kxi028. Epub 2005 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验