Suppr超能文献

利用扩散各向异性对灰质中的神经元形态进行特征描述:NeuroMorpho.org 数据库中轴突和树突的取向分布。

Using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the NeuroMorpho.org database.

机构信息

Center for Functionally Integrative Neuroscience and MINDLab, NeuroCampus Aarhus, Aarhus University Aarhus, Denmark.

出版信息

Front Integr Neurosci. 2013 May 14;7:31. doi: 10.3389/fnint.2013.00031. eCollection 2013.

Abstract

Accurate mathematical modeling is integral to the ability to interpret diffusion magnetic resonance (MR) imaging data in terms of cellular structure in brain gray matter (GM). In previous work, we derived expressions to facilitate the determination of the orientation distribution of axonal and dendritic processes from diffusion MR data. Here we utilize neuron reconstructions available in the NeuroMorpho database (www.neuromorpho.org) to assess the validity of the model we proposed by comparing morphological properties of the neurons to predictions based on diffusion MR simulations using the reconstructed neuron models. Initially, the method for directly determining neurite orientation distributions is shown to not depend on the line length used to quantify cylindrical elements. Further variability in neuron morphology is characterized relative to neuron type, species, and laboratory of origin. Subsequently, diffusion MR signals are simulated based on human neocortical neuron reconstructions. This reveals a bias in which diffusion MR data predict neuron orientation distributions to have artificially low anisotropy. This bias is shown to arise from shortcomings (already at relatively low diffusion weighting) in the Gaussian approximation of diffusion, in the presence of restrictive barriers, and data analysis methods involving higher moments of the cumulant expansion are shown to be capable of reducing the magnitude of the observed bias.

摘要

准确的数学建模对于根据大脑灰质(GM)中的细胞结构来解释扩散磁共振(MR)成像数据至关重要。在之前的工作中,我们推导出了一些表达式,以方便从扩散 MR 数据中确定轴突和树突过程的方向分布。在这里,我们利用 NeuroMorpho 数据库(www.neuromorpho.org)中提供的神经元重建,通过将神经元的形态特性与基于重建神经元模型的扩散 MR 模拟的预测进行比较,来评估我们提出的模型的有效性。首先,直接确定神经突取向分布的方法被证明不依赖于用于量化圆柱元件的线长。进一步的神经元形态变化与神经元类型、物种和实验室来源有关。随后,基于人类新皮层神经元重建模拟扩散 MR 信号。这揭示了扩散磁共振数据预测神经元取向分布具有人为低各向异性的偏差。这种偏差是由于在存在限制障碍的情况下,扩散的高斯近似存在缺陷,以及涉及累积量展开的更高阶矩的数据分析方法,这些方法被证明能够减小观察到的偏差的幅度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4738/3653140/99d74e820797/fnint-07-00031-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验