INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, 91128 Palaiseau Cedex, France; INRIA Saclay, Equipe Parietal, 1 Rue Honoré d'Estienne d'Orves, 91120 Palaiseau, France.
Department of Computational Science and Technology, KTH Royal Institute of Technology, Sweden.
Neuroimage. 2020 Nov 15;222:117198. doi: 10.1016/j.neuroimage.2020.117198. Epub 2020 Jul 27.
The diffusion MRI signal arising from neurons can be numerically simulated by solving the Bloch-Torrey partial differential equation. In this paper we present the Neuron Module that we implemented within the Matlab-based diffusion MRI simulation toolbox SpinDoctor. SpinDoctor uses finite element discretization and adaptive time integration to solve the Bloch-Torrey partial differential equation for general diffusion-encoding sequences, at multiple b-values and in multiple diffusion directions. In order to facilitate the diffusion MRI simulation of realistic neurons by the research community, we constructed finite element meshes for a group of 36 pyramidal neurons and a group of 29 spindle neurons whose morphological descriptions were found in the publicly available neuron repository NeuroMorpho.Org. These finite elements meshes range from having 15,163 nodes to 622,553 nodes. We also broke the neurons into the soma and dendrite branches and created finite elements meshes for these cell components. Through the Neuron Module, these neuron and cell components finite element meshes can be seamlessly coupled with the functionalities of SpinDoctor to provide the diffusion MRI signal attributable to spins inside neurons. We make these meshes and the source code of the Neuron Module available to the public as an open-source package. To illustrate some potential uses of the Neuron Module, we show numerical examples of the simulated diffusion MRI signals in multiple diffusion directions from whole neurons as well as from the soma and dendrite branches, and include a comparison of the high b-value behavior between dendrite branches and whole neurons. In addition, we demonstrate that the neuron meshes can be used to perform Monte-Carlo diffusion MRI simulations as well. We show that at equivalent accuracy, if only one gradient direction needs to be simulated, SpinDoctor is faster than a GPU implementation of Monte-Carlo, but if many gradient directions need to be simulated, there is a break-even point when the GPU implementation of Monte-Carlo becomes faster than SpinDoctor. Furthermore, we numerically compute the eigenfunctions and the eigenvalues of the Bloch-Torrey and the Laplace operators on the neuron geometries using a finite elements discretization, in order to give guidance in the choice of the space and time discretization parameters for both finite elements and Monte-Carlo approaches. Finally, we perform a statistical study on the set of 65 neurons to test some candidate biomakers that can potentially indicate the soma size. This preliminary study exemplifies the possible research that can be conducted using the Neuron Module.
神经元的扩散 MRI 信号可以通过求解 Bloch-Torrey 偏微分方程来进行数值模拟。在本文中,我们介绍了我们在基于 Matlab 的扩散 MRI 模拟工具箱 SpinDoctor 中实现的神经元模块。SpinDoctor 使用有限元离散化和自适应时间积分来解决一般扩散编码序列的 Bloch-Torrey 偏微分方程,可在多个 b 值和多个扩散方向下进行。为了方便研究人员对真实神经元的扩散 MRI 模拟,我们为一组 36 个锥体神经元和一组 29 个纺锤形神经元构建了有限元网格,这些神经元的形态描述可在公开的神经元存储库 NeuroMorpho.Org 中找到。这些有限元网格的节点数从 15163 个到 622553 个不等。我们还将神经元分为胞体和树突分支,并为这些细胞成分创建了有限元网格。通过神经元模块,可以将这些神经元和细胞成分的有限元网格与 SpinDoctor 的功能无缝耦合,以提供归因于神经元内自旋的扩散 MRI 信号。我们将这些网格和神经元模块的源代码作为开源软件包提供给公众。为了说明神经元模块的一些潜在用途,我们展示了来自整个神经元以及胞体和树突分支的多个扩散方向的模拟扩散 MRI 信号的数值示例,并包括了树突分支和整个神经元之间高 b 值行为的比较。此外,我们还证明了神经元网格也可以用于执行蒙特卡罗扩散 MRI 模拟。我们表明,在等效精度下,如果只需要模拟一个梯度方向,那么 SpinDoctor 比蒙特卡罗的 GPU 实现更快,但如果需要模拟多个梯度方向,则当 GPU 实现的蒙特卡罗比 SpinDoctor 更快时,会出现一个平衡点。此外,我们使用有限元离散化数值计算了神经元几何形状上的 Bloch-Torrey 和拉普拉斯算子的特征函数和特征值,以便为有限元和蒙特卡罗方法的空间和时间离散化参数选择提供指导。最后,我们对 65 个神经元进行了统计研究,以测试一些潜在的生物标志物,这些标志物可能表明胞体大小。这项初步研究示例说明了使用神经元模块可以进行的一些可能的研究。