Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK.
Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK; Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
Neuroimage. 2020 Jul 15;215:116835. doi: 10.1016/j.neuroimage.2020.116835. Epub 2020 Apr 11.
This work introduces a compartment-based model for apparent cell body (namely soma) and neurite density imaging (SANDI) using non-invasive diffusion-weighted MRI (DW-MRI). The existing conjecture in brain microstructure imaging through DW-MRI presents water diffusion in white (WM) and gray (GM) matter as restricted diffusion in neurites, modelled by infinite cylinders of null radius embedded in the hindered extra-neurite water. The extra-neurite pool in WM corresponds to water in the extra-axonal space, but in GM it combines water in the extra-cellular space with water in soma. While several studies showed that this microstructure model successfully describe DW-MRI data in WM and GM at b ≤ 3,000 s/mm (or 3 ms/μm), it has been also shown to fail in GM at high b values (b≫3,000 s/mm or 3 ms/μm). Here we hypothesise that the unmodelled soma compartment (i.e. cell body of any brain cell type: from neuroglia to neurons) may be responsible for this failure and propose SANDI as a new model of brain microstructure where soma of any brain cell type is explicitly included. We assess the effects of size and density of soma on the direction-averaged DW-MRI signal at high b values and the regime of validity of the model using numerical simulations and comparison with experimental data from mouse (b = 40,000 s/mm, or 40 ms/μm) and human (b = 10,000 s/mm, or 10 ms/μm) brain. We show that SANDI defines new contrasts representing complementary information on the brain cyto- and myelo-architecture. Indeed, we show maps from 25 healthy human subjects of MR soma and neurite signal fractions, that remarkably mirror contrasts of histological images of brain cyto- and myelo-architecture. Although still under validation, SANDI might provide new insight into tissue architecture by introducing a new set of biomarkers of potential great value for biomedical applications and pure neuroscience.
本工作介绍了一种基于隔室的表观细胞体(即体)和神经突密度成像(SANDI)模型,该模型使用非侵入性扩散加权 MRI(DW-MRI)。目前在通过 DW-MRI 进行脑微观结构成像方面的推测是,水在白质(WM)和灰质(GM)中的扩散被认为是神经突中的受限扩散,由嵌入在受阻的细胞外神经突水中的零半径无限圆柱来模拟。WM 中的细胞外池对应于细胞外轴突空间中的水,但在 GM 中,它将细胞外空间中的水与体中的水结合在一起。虽然有几项研究表明,这种微观结构模型成功地描述了 WM 和 GM 中 b≤3,000 s/mm(或 3 ms/μm)的 DW-MRI 数据,但也表明在 b 值较高时(b≫3,000 s/mm 或 3 ms/μm)在 GM 中失败。在这里,我们假设未建模的体隔室(即任何脑型细胞的体:从神经胶质到神经元)可能是导致这种失败的原因,并提出 SANDI 作为一种新的脑微观结构模型,其中明确包含任何脑型细胞的体。我们使用数值模拟和与来自小鼠(b=40,000 s/mm,或 40 ms/μm)和人类(b=10,000 s/mm,或 10 ms/μm)大脑的实验数据进行比较,评估了体的大小和密度对高 b 值下方向平均 DW-MRI 信号的影响和模型的有效性范围。我们表明,SANDI 定义了新的对比,代表了对脑细胞和髓鞘结构的互补信息。事实上,我们展示了来自 25 名健康人类受试者的 MR 体和神经突信号分数的图谱,这些图谱与脑细胞和髓鞘结构的组织学图像的对比惊人地相似。尽管仍在验证中,SANDI 可能通过引入一组新的潜在生物医学应用和纯神经科学具有重要价值的生物标志物,为组织架构提供新的见解。