Suppr超能文献

胰腺癌、胰腺炎与健康对照:三类诊断困境中的代谢物模型

Pancreatic carcinoma, pancreatitis, and healthy controls: metabolite models in a three-class diagnostic dilemma.

作者信息

Leichtle Alexander Benedikt, Ceglarek Uta, Weinert Peter, Nakas Christos T, Nuoffer Jean-Marc, Kase Julia, Conrad Tim, Witzigmann Helmut, Thiery Joachim, Fiedler Georg Martin

机构信息

Center of Laboratory Medicine, University Institute of Clinical Chemistry, Inselspital-Bern University Hospital, Inselspital INO F 502/UKC, 3010 Bern, Switzerland.

出版信息

Metabolomics. 2013 Jun;9(3):677-687. doi: 10.1007/s11306-012-0476-7. Epub 2012 Nov 6.

Abstract

Metabolomics as one of the most rapidly growing technologies in the "-omics" field denotes the comprehensive analysis of low molecular-weight compounds and their pathways. Cancer-specific alterations of the metabolome can be detected by high-throughput mass-spectrometric metabolite profiling and serve as a considerable source of new markers for the early differentiation of malignant diseases as well as their distinction from benign states. However, a comprehensive framework for the statistical evaluation of marker panels in a multi-class setting has not yet been established. We collected serum samples of 40 pancreatic carcinoma patients, 40 controls, and 23 pancreatitis patients according to standard protocols and generated amino acid profiles by routine mass-spectrometry. In an intrinsic three-class bioinformatic approach we compared these profiles, evaluated their selectivity and computed multi-marker panels combined with the conventional tumor marker CA 19-9. Additionally, we tested for non-inferiority and superiority to determine the diagnostic surplus value of our multi-metabolite marker panels. Compared to CA 19-9 alone, the combined amino acid-based metabolite panel had a superior selectivity for the discrimination of healthy controls, pancreatitis, and pancreatic carcinoma patients [Formula: see text] We combined highly standardized samples, a three-class study design, a high-throughput mass-spectrometric technique, and a comprehensive bioinformatic framework to identify metabolite panels selective for all three groups in a single approach. Our results suggest that metabolomic profiling necessitates appropriate evaluation strategies and-despite all its current limitations-can deliver marker panels with high selectivity even in multi-class settings.

摘要

代谢组学作为“组学”领域中发展最为迅速的技术之一,是指对低分子量化合物及其代谢途径进行全面分析。通过高通量质谱代谢物谱分析可以检测到代谢组的癌症特异性改变,这些改变可作为新标志物的重要来源,用于恶性疾病的早期鉴别以及与良性疾病的区分。然而,尚未建立用于在多类别环境中对标志物组进行统计评估的综合框架。我们按照标准方案收集了40例胰腺癌患者、40例对照和23例胰腺炎患者的血清样本,并通过常规质谱分析生成氨基酸谱。在一种内在的三类生物信息学方法中,我们比较了这些谱图,评估了它们的选择性,并结合传统肿瘤标志物CA 19-9计算多标志物组。此外,我们还进行了非劣效性和优越性测试,以确定我们的多代谢物标志物组的诊断剩余价值。与单独使用CA 19-9相比,基于氨基酸的联合代谢物组在区分健康对照、胰腺炎和胰腺癌患者方面具有更高的选择性[公式:见正文]。我们结合了高度标准化的样本、三类研究设计、高通量质谱技术和全面的生物信息学框架,以单一方法识别对所有三组均具有选择性的代谢物组。我们的结果表明,代谢组学分析需要适当的评估策略,并且尽管目前存在所有局限性,但即使在多类别环境中也能提供具有高选择性的标志物组。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99db/3651533/5aeddc3b4414/11306_2012_476_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验