Suppr超能文献

更高效:一种基于网格化加速托普利兹矩阵的策略,用于在图形处理器上进行非笛卡尔高分辨率3D磁共振成像

More IMPATIENT: A Gridding-Accelerated Toeplitz-based Strategy for Non-Cartesian High-Resolution 3D MRI on GPUs.

作者信息

Gai Jiading, Obeid Nady, Holtrop Joseph L, Wu Xiao-Long, Lam Fan, Fu Maojing, Haldar Justin P, Hwu Wen-Mei W, Liang Zhi-Pei, Sutton Bradley P

机构信息

Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

出版信息

J Parallel Distrib Comput. 2013 May 1;73(5):686-697. doi: 10.1016/j.jpdc.2013.01.001.

Abstract

Several recent methods have been proposed to obtain significant speed-ups in MRI image reconstruction by leveraging the computational power of GPUs. Previously, we implemented a GPU-based image reconstruction technique called the Illinois Massively Parallel Acquisition Toolkit for Image reconstruction with ENhanced Throughput in MRI (IMPATIENT MRI) for reconstructing data collected along arbitrary 3D trajectories. In this paper, we improve IMPATIENT by removing computational bottlenecks by using a gridding approach to accelerate the computation of various data structures needed by the previous routine. Further, we enhance the routine with capabilities for off-resonance correction and multi-sensor parallel imaging reconstruction. Through implementation of optimized gridding into our iterative reconstruction scheme, speed-ups of more than a factor of 200 are provided in the improved GPU implementation compared to the previous accelerated GPU code.

摘要

最近已经提出了几种方法,通过利用GPU的计算能力来显著加速MRI图像重建。此前,我们实现了一种基于GPU的图像重建技术,称为伊利诺伊州大规模并行采集图像重建工具包,用于在MRI中提高吞吐量(IMPATIENT MRI),以重建沿任意3D轨迹采集的数据。在本文中,我们通过使用网格化方法来加速先前例程所需的各种数据结构的计算,从而消除计算瓶颈,对IMPATIENT进行了改进。此外,我们还增强了该例程的失谐校正和多传感器并行成像重建能力。通过在我们的迭代重建方案中实现优化的网格化,与之前的加速GPU代码相比,改进后的GPU实现提供了超过200倍的加速。

相似文献

1
More IMPATIENT: A Gridding-Accelerated Toeplitz-based Strategy for Non-Cartesian High-Resolution 3D MRI on GPUs.
J Parallel Distrib Comput. 2013 May 1;73(5):686-697. doi: 10.1016/j.jpdc.2013.01.001.
5
CUDA accelerated uniform re-sampling for non-Cartesian MR reconstruction.
Biomed Mater Eng. 2015;26 Suppl 1:S983-9. doi: 10.3233/BME-151393.
6
Fully 3D list-mode time-of-flight PET image reconstruction on GPUs using CUDA.
Med Phys. 2011 Dec;38(12):6775-86. doi: 10.1118/1.3661998.
7
A Fast GPU-optimized 3D MRI Simulator for Arbitrary k-space Sampling.
Magn Reson Med Sci. 2019 Jul 16;18(3):208-218. doi: 10.2463/mrms.mp.2018-0022. Epub 2018 Nov 9.
8
Rapid compressed sensing reconstruction of 3D non-Cartesian MRI.
Magn Reson Med. 2018 May;79(5):2685-2692. doi: 10.1002/mrm.26928. Epub 2017 Sep 23.
10
GPU accelerated dynamic functional connectivity analysis for functional MRI data.
Comput Med Imaging Graph. 2015 Jul;43:53-63. doi: 10.1016/j.compmedimag.2015.02.009. Epub 2015 Mar 7.

引用本文的文献

1
Trajectory optimized NUFFT: Faster non-Cartesian MRI reconstruction through prior knowledge and parallel architectures.
Magn Reson Med. 2019 Mar;81(3):2064-2071. doi: 10.1002/mrm.27497. Epub 2018 Oct 17.
2
A survey of GPU-based acceleration techniques in MRI reconstructions.
Quant Imaging Med Surg. 2018 Mar;8(2):196-208. doi: 10.21037/qims.2018.03.07.
3
Accelerated Computing in Magnetic Resonance Imaging: Real-Time Imaging Using Nonlinear Inverse Reconstruction.
Comput Math Methods Med. 2017;2017:3527269. doi: 10.1155/2017/3527269. Epub 2017 Dec 31.
4
Rapid compressed sensing reconstruction of 3D non-Cartesian MRI.
Magn Reson Med. 2018 May;79(5):2685-2692. doi: 10.1002/mrm.26928. Epub 2017 Sep 23.
5
Spatially-segmented undersampled MRI temperature reconstruction for transcranial MR-guided focused ultrasound.
J Ther Ultrasound. 2017 May 30;5:13. doi: 10.1186/s40349-017-0092-0. eCollection 2017.
7
Recommendations for real-time speech MRI.
J Magn Reson Imaging. 2016 Jan;43(1):28-44. doi: 10.1002/jmri.24997. Epub 2015 Jul 14.
8
Co-registration and distortion correction of diffusion and anatomical images based on inverse contrast normalization.
Neuroimage. 2015 Jul 15;115:269-80. doi: 10.1016/j.neuroimage.2015.03.050. Epub 2015 Mar 27.
9
High-resolution dynamic speech imaging with joint low-rank and sparsity constraints.
Magn Reson Med. 2015 May;73(5):1820-32. doi: 10.1002/mrm.25302. Epub 2014 Jun 9.

本文引用的文献

2
Improved diffusion imaging through SNR-enhancing joint reconstruction.
Magn Reson Med. 2013 Jan;69(1):277-89. doi: 10.1002/mrm.24229. Epub 2012 Mar 5.
3
Fast l₁-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime.
IEEE Trans Med Imaging. 2012 Jun;31(6):1250-62. doi: 10.1109/TMI.2012.2188039. Epub 2012 Feb 15.
4
Accelerating Advanced MRI Reconstructions on GPUs.
J Parallel Distrib Comput. 2008 Oct;68(10):1307-1318. doi: 10.1016/j.jpdc.2008.05.013.
5
Motion-induced phase error estimation and correction in 3D diffusion tensor imaging.
IEEE Trans Med Imaging. 2011 Nov;30(11):1933-40. doi: 10.1109/TMI.2011.2158654. Epub 2011 Jun 7.
6
Second order total generalized variation (TGV) for MRI.
Magn Reson Med. 2011 Feb;65(2):480-91. doi: 10.1002/mrm.22595. Epub 2010 Dec 8.
7
MODEL-BASED IMAGE RECONSTRUCTION FOR MRI.
IEEE Signal Process Mag. 2010 Jul 1;27(4):81-89. doi: 10.1109/MSP.2010.936726.
8
Fast reduction of undersampling artifacts in radial MR angiography with 3D total variation on graphics hardware.
MAGMA. 2010 Apr;23(2):103-14. doi: 10.1007/s10334-010-0207-x. Epub 2010 Mar 30.
9
Online real-time reconstruction of adaptive TSENSE with commodity CPU/GPU hardware.
Magn Reson Med. 2009 Dec;62(6):1658-64. doi: 10.1002/mrm.22112.
10
Real-time reconstruction of sensitivity encoded radial magnetic resonance imaging using a graphics processing unit.
IEEE Trans Med Imaging. 2009 Dec;28(12):1974-85. doi: 10.1109/TMI.2009.2027118. Epub 2009 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验