Suppr超能文献

磁共振成像中的加速计算:使用非线性逆重建的实时成像

Accelerated Computing in Magnetic Resonance Imaging: Real-Time Imaging Using Nonlinear Inverse Reconstruction.

作者信息

Schaetz Sebastian, Voit Dirk, Frahm Jens, Uecker Martin

机构信息

Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.

DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.

出版信息

Comput Math Methods Med. 2017;2017:3527269. doi: 10.1155/2017/3527269. Epub 2017 Dec 31.

Abstract

PURPOSE

To develop generic optimization strategies for image reconstruction using graphical processing units (GPUs) in magnetic resonance imaging (MRI) and to exemplarily report on our experience with a highly accelerated implementation of the nonlinear inversion (NLINV) algorithm for dynamic MRI with high frame rates.

METHODS

The NLINV algorithm is optimized and ported to run on a multi-GPU single-node server. The algorithm is mapped to multiple GPUs by decomposing the data domain along the channel dimension. Furthermore, the algorithm is decomposed along the temporal domain by relaxing a temporal regularization constraint, allowing the algorithm to work on multiple frames in parallel. Finally, an autotuning method is presented that is capable of combining different decomposition variants to achieve optimal algorithm performance in different imaging scenarios.

RESULTS

The algorithm is successfully ported to a multi-GPU system and allows online image reconstruction with high frame rates. Real-time reconstruction with low latency and frame rates up to 30 frames per second is demonstrated.

CONCLUSION

Novel parallel decomposition methods are presented which are applicable to many iterative algorithms for dynamic MRI. Using these methods to parallelize the NLINV algorithm on multiple GPUs, it is possible to achieve online image reconstruction with high frame rates.

摘要

目的

开发用于磁共振成像(MRI)中使用图形处理单元(GPU)进行图像重建的通用优化策略,并示例性地报告我们在高帧率动态MRI的非线性反演(NLINV)算法的高度加速实现方面的经验。

方法

对NLINV算法进行优化并移植到多GPU单节点服务器上运行。通过沿通道维度分解数据域,将算法映射到多个GPU上。此外,通过放宽时间正则化约束沿时间域分解算法,使算法能够并行处理多个帧。最后,提出了一种自动调谐方法,该方法能够组合不同的分解变体,以在不同的成像场景中实现最佳算法性能。

结果

该算法成功移植到多GPU系统上,并允许以高帧率进行在线图像重建。展示了低延迟和高达每秒30帧的帧率的实时重建。

结论

提出了适用于许多动态MRI迭代算法的新型并行分解方法。使用这些方法在多个GPU上并行化NLINV算法,可以实现高帧率的在线图像重建。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8fb/5804376/d7d6ff81850f/CMMM2017-3527269.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验