Suppr超能文献

学术化学筛选中的创新:填补化学生物学的空白。

Innovation in academic chemical screening: filling the gaps in chemical biology.

机构信息

National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.

出版信息

Curr Opin Chem Biol. 2013 Jun;17(3):329-38. doi: 10.1016/j.cbpa.2013.04.018. Epub 2013 May 14.

Abstract

Academic screening centers across the world have endeavored to discover small molecules that can modulate biological systems. To increase the reach of functional-genomic and chemical screening programs, universities, research institutes, and governments have followed their industrial counterparts in adopting high-throughput paradigms. As academic screening efforts have steadily grown in scope and complexity, so have the ideas of what is possible with the union of technology and biology. This review addresses the recent conceptual and technological innovation that has been propelling academic screening into its own unique niche. In particular, high-content and whole-organism screening are changing how academics search for novel bioactive compounds. Importantly, we recognize examples of successful chemical probe development that have punctuated the changing technology landscape.

摘要

全球的学术筛选中心一直致力于发现能够调节生物系统的小分子。为了扩大功能基因组学和化学筛选计划的范围,大学、研究所和政府效仿其工业同行,采用高通量模式。随着学术筛选工作在范围和复杂性上的稳步增长,技术和生物学的结合所能实现的目标也在不断增加。本文综述了最近的概念和技术创新,这些创新正在推动学术筛选进入其独特的领域。特别是高内涵和整体生物筛选正在改变学术界寻找新型生物活性化合物的方式。重要的是,我们认识到成功的化学探针开发的例子,这些例子突显了不断变化的技术格局。

相似文献

1
Innovation in academic chemical screening: filling the gaps in chemical biology.
Curr Opin Chem Biol. 2013 Jun;17(3):329-38. doi: 10.1016/j.cbpa.2013.04.018. Epub 2013 May 14.
2
Navigating chemical space for biology and medicine.
Nature. 2004 Dec 16;432(7019):855-61. doi: 10.1038/nature03193.
4
Open access high throughput drug discovery in the public domain: a Mount Everest in the making.
Curr Pharm Biotechnol. 2010 Nov;11(7):764-78. doi: 10.2174/138920110792927757.
5
Integration of small-molecule discovery in academic biomedical research.
Mt Sinai J Med. 2010 Jul-Aug;77(4):350-7. doi: 10.1002/msj.20197.
6
UCSF Small Molecule Discovery Center: innovation, collaboration and chemical biology in the Bay Area.
Comb Chem High Throughput Screen. 2014 May;17(4):333-42. doi: 10.2174/1386207317666140323133841.
7
The Emory Chemical Biology Discovery Center: leveraging academic innovation to advance novel targets through HTS and beyond.
Comb Chem High Throughput Screen. 2014 Mar;17(3):290-6. doi: 10.2174/1386207317666140109125415.
8
Using high-content screening technology for studying drug-induced hepatotoxicity in preclinical studies.
Expert Opin Drug Discov. 2017 Feb;12(2):201-211. doi: 10.1080/17460441.2017.1271784. Epub 2016 Dec 21.
9
Developing the Biomolecular Screening Facility at the EPFL into the Chemical Biology Screening Platform for Switzerland.
Comb Chem High Throughput Screen. 2014 May;17(4):369-76. doi: 10.2174/1386207317666140323194716.
10
Functional cell-based uHTS in chemical genomic drug discovery.
Trends Biotechnol. 2002 Mar;20(3):110-5. doi: 10.1016/s0167-7799(02)01906-6.

引用本文的文献

1
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
Dis Model Mech. 2023 Mar 1;16(3). doi: 10.1242/dmm.049863. Epub 2023 Mar 20.
2
Use of a Fission Yeast Platform to Identify and Characterize Small Molecule PDE Inhibitors.
Front Pharmacol. 2022 Jan 17;12:833156. doi: 10.3389/fphar.2021.833156. eCollection 2021.
3
Data-analysis strategies for image-based cell profiling.
Nat Methods. 2017 Aug 31;14(9):849-863. doi: 10.1038/nmeth.4397.
4
Complementary Approaches to Existing Target Based Drug Discovery for Identifying Novel Drug Targets.
Biomedicines. 2016 Nov 21;4(4):27. doi: 10.3390/biomedicines4040027.
5
Quantitative High-Throughput Screening Using a Coincidence Reporter Biocircuit.
Curr Protoc Neurosci. 2017 Apr 10;79:5.32.1-5.32.27. doi: 10.1002/cpns.27.
7
Mitigating risk in academic preclinical drug discovery.
Nat Rev Drug Discov. 2015 Apr;14(4):279-94. doi: 10.1038/nrd4578.
9
Chemical genomics for studying parasite gene function and interaction.
Trends Parasitol. 2013 Dec;29(12):603-11. doi: 10.1016/j.pt.2013.10.005. Epub 2013 Nov 9.

本文引用的文献

1
Identification of Potent, Selective, Cell-Active Inhibitors of the Histone Lysine Methyltransferase EZH2.
ACS Med Chem Lett. 2012 Oct 19;3(12):1091-6. doi: 10.1021/ml3003346. eCollection 2012 Dec 13.
2
Adapting human pluripotent stem cells to high-throughput and high-content screening.
Nat Protoc. 2013 Jan;8(1):111-30. doi: 10.1038/nprot.2012.139. Epub 2012 Dec 20.
3
A public-private partnership to unlock the untargeted kinome.
Nat Chem Biol. 2013 Jan;9(1):3-6. doi: 10.1038/nchembio.1113.
4
Mechanistic and structural understanding of uncompetitive inhibitors of caspase-6.
PLoS One. 2012;7(12):e50864. doi: 10.1371/journal.pone.0050864. Epub 2012 Dec 5.
5
Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism.
Nat Chem Biol. 2013 Feb;9(2):97-104. doi: 10.1038/nchembio.1136. Epub 2012 Dec 2.
7
Four disruptive strategies for removing drug discovery bottlenecks.
Drug Discov Today. 2013 Mar;18(5-6):265-71. doi: 10.1016/j.drudis.2012.10.007. Epub 2012 Oct 23.
8
Systematic identification of synergistic drug pairs targeting HIV.
Nat Biotechnol. 2012 Nov;30(11):1125-30. doi: 10.1038/nbt.2391. Epub 2012 Oct 14.
9
High-throughput screening of zebrafish embryos using automated heart detection and imaging.
J Lab Autom. 2012 Dec;17(6):435-42. doi: 10.1177/2211068212464223. Epub 2012 Oct 10.
10
A coincidence reporter-gene system for high-throughput screening.
Nat Methods. 2012 Oct;9(10):937. doi: 10.1038/nmeth.2170.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验