Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20817, USA.
Dis Model Mech. 2023 Mar 1;16(3). doi: 10.1242/dmm.049863. Epub 2023 Mar 20.
Quantitative high-throughput screening (qHTS) pharmacologically evaluates chemical libraries for therapeutic uses, toxicological risk and, increasingly, for academic probe discovery. Phenotypic high-throughput screening assays interrogate molecular pathways, often relying on cell culture systems, historically less focused on multicellular organisms. Caenorhabditis elegans has served as a eukaryotic model organism for human biology by virtue of genetic conservation and experimental tractability. Here, a paradigm enabling C. elegans qHTS using 384-well microtiter plate laser-scanning cytometry is described, in which GFP-expressing organisms revealing phenotype-modifying structure-activity relationships guide subsequent life-stage and proteomic analyses, and Escherichia coli bacterial ghosts, a non-replicating nutrient source, allow compound exposures over two life cycles, mitigating bacterial overgrowth complications. We demonstrate the method with libraries of anti-infective agents, or substances of toxicological concern. Each was tested in seven-point titration to assess the feasibility of nematode-based in vivo qHTS, and examples of follow-up strategies were provided to study organism-based chemotype selectivity and subsequent network perturbations with a physiological impact. We anticipate that this qHTS approach will enable analysis of C. elegans orthologous phenotypes of human pathologies to facilitate drug library profiling for a range of therapeutic indications.
高通量定量筛选 (qHTS) 可对化学文库进行药理学评估,以确定其治疗用途、毒理学风险,以及越来越多地用于学术探针发现。表型高通量筛选测定法检测分子途径,通常依赖于细胞培养系统,而这些系统在历史上较少关注多细胞生物。秀丽隐杆线虫因其遗传保守性和实验可操作性而成为人类生物学的真核模式生物。在这里,描述了一种使用 384 孔微量滴定板激光扫描细胞仪对秀丽隐杆线虫进行 qHTS 的范例,其中表达 GFP 的生物体揭示了改变表型的结构-活性关系,指导随后的生命阶段和蛋白质组学分析,而大肠杆菌细菌幽灵(一种非复制的营养源)允许在两个生命周期中进行化合物暴露,减轻细菌过度生长的并发症。我们用抗感染药物库或具有毒理学关注的物质来演示该方法。每种药物都进行了七点滴定测试,以评估基于线虫的体内 qHTS 的可行性,并提供了后续策略的示例,以研究基于生物体的化学型选择性以及对生理有影响的后续网络扰动。我们预计,这种 qHTS 方法将能够分析秀丽隐杆线虫与人病理学的同源表型,从而促进针对一系列治疗适应症的药物文库分析。