在 AZ31 镁合金上通过层层涂覆生物可降解聚合物实现耐腐蚀和提高细胞相容性。
Corrosion protection and improved cytocompatibility of biodegradable polymeric layer-by-layer coatings on AZ31 magnesium alloys.
机构信息
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
出版信息
Acta Biomater. 2013 Nov;9(10):8704-13. doi: 10.1016/j.actbio.2013.05.010. Epub 2013 May 16.
Composite coatings of electrostatically assembled layer-by-layer anionic and cationic polymers combined with an Mg(OH)2 surface treatment serve to provide a protective coating on AZ31 magnesium alloy substrates. These ceramic conversion coating and layer-by-layer polymeric coating combinations reduced the initial and long-term corrosion progression of the AZ31 alloy. X-ray diffraction and Fourier transform infrared spectroscopy confirmed the successful application of coatings. Potentiostatic polarization tests indicate improved initial corrosion resistance. Hydrogen evolution measurements over a 2 week period and magnesium ion levels over a 1 week period indicate longer range corrosion protection and retention of the Mg(OH)2 passivation layer in comparison to the uncoated substrates. Live/dead staining and DNA quantification were used as measures of biocompatibility and proliferation while actin staining and scanning electron microscopy were used to observe the cellular morphology and integration with the coated substrates. The coatings simultaneously provided improved biocompatibility, cellular adhesion and proliferation in comparison to the uncoated alloy surface utilizing both murine pre-osteoblast MC3T3 cells and human mesenchymal stem cells. The implementation of such coatings on magnesium alloy implants could serve to improve the corrosion resistance and cellular integration of these implants with the native tissue while delivering vital drugs or biological elements to the site of implantation.
静电逐层组装的阴离子和阳离子聚合物与 Mg(OH)2 表面处理的复合涂层可在 AZ31 镁合金基底上提供保护性涂层。这些陶瓷转化涂层和层层聚合物涂层的组合降低了 AZ31 合金的初始和长期腐蚀进展。X 射线衍射和傅里叶变换红外光谱证实了涂层的成功应用。恒电位极化测试表明初始耐腐蚀性得到提高。在 2 周的时间内进行析氢测量和在 1 周的时间内测量镁离子水平表明,与未涂层的基底相比,这些涂层具有更长时间的腐蚀保护和对 Mg(OH)2 钝化层的保留。活/死染色和 DNA 定量可作为生物相容性和增殖的测量指标,而肌动蛋白染色和扫描电子显微镜用于观察细胞形态和与涂层基底的整合。与未涂层的合金表面相比,这些涂层同时提高了生物相容性、细胞黏附和增殖,利用了鼠前成骨细胞 MC3T3 细胞和人骨髓间充质干细胞。在镁合金植入物上实施这种涂层可以提高这些植入物与天然组织的耐腐蚀性和细胞整合性,同时向植入部位输送重要的药物或生物元素。