Suppr超能文献

链霉菌工程强启动子。

An engineered strong promoter for streptomycetes.

机构信息

State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.

出版信息

Appl Environ Microbiol. 2013 Jul;79(14):4484-92. doi: 10.1128/AEM.00985-13. Epub 2013 May 17.

Abstract

Well-characterized promoters are essential tools for metabolic engineering and synthetic biology. In Streptomyces coelicolor, the native kasOp is a temporally expressed promoter strictly controlled by two regulators, ScbR and ScbR2. In this work, first, kasOp was engineered to remove a common binding site of ScbR and ScbR2 upstream of its core region, thus generating a stronger promoter, kasOp3. Second, another ScbR binding site internal to the kasOp3 core promoter region was abolished by random mutation and screening of the mutant library to obtain the strongest promoter, kasOp* (where the asterisk is used to distinguish the engineered promoter from the native promoter). The activities of kasOp* were compared with those of two known strong promoters, ermEp* and SF14p, in three Streptomyces species. kasOp* showed the highest activity at the transcription and protein levels in all three hosts. Furthermore, relative to ermEp* and SF14p, kasOp* was shown to confer the highest actinorhodin production level when used to drive the expression of actII-ORF4 in S. coelicolor. Therefore, kasOp* is a simple and well-defined strong promoter useful for gene overexpression in streptomycetes.

摘要

特征明确的启动子是代谢工程和合成生物学的重要工具。在天蓝色链霉菌中,天然的 kasOp 是一个受两个调控因子 ScbR 和 ScbR2 严格调控的瞬时表达启动子。在这项工作中,首先,对 kasOp 进行了工程改造,去除了其核心区域上游 ScbR 和 ScbR2 的一个常见结合位点,从而产生了一个更强的启动子 kasOp3。其次,通过随机突变和突变文库的筛选,在 kasOp3 核心启动子区域内的另一个 ScbR 结合位点被消除,从而获得了最强的启动子 kasOp*(其中星号用于将工程化的启动子与天然启动子区分开来)。kasOp的活性在三种链霉菌中与两个已知的强启动子 ermEp和 SF14p 进行了比较。kasOp在所有三种宿主中的转录和蛋白水平上表现出最高的活性。此外,与 ermEp和 SF14p 相比,当用于驱动 actII-ORF4 在天蓝色链霉菌中的表达时,kasOp表现出最高的放线紫红素生产水平。因此,kasOp是一种简单且定义明确的强启动子,可用于链霉菌中的基因过表达。

相似文献

1
An engineered strong promoter for streptomycetes.链霉菌工程强启动子。
Appl Environ Microbiol. 2013 Jul;79(14):4484-92. doi: 10.1128/AEM.00985-13. Epub 2013 May 17.

引用本文的文献

7
Nonglycosidic bond formation catalyzed by a bifunctional pseudoglycosyltransferase ValL.由双功能假糖基转移酶ValL催化的非糖苷键形成。
Synth Syst Biotechnol. 2025 Apr 17;10(3):846-857. doi: 10.1016/j.synbio.2025.04.007. eCollection 2025 Sep.
10
Iterative glycosylation on a single residue of a mature lasso peptide.对成熟套索肽的单个残基进行迭代糖基化。
Chem Sci. 2025 Mar 17;16(15):6480-6487. doi: 10.1039/d5sc00605h. eCollection 2025 Apr 9.

本文引用的文献

4
Synthetic biology and the development of tools for metabolic engineering.合成生物学与代谢工程工具的发展。
Metab Eng. 2012 May;14(3):189-95. doi: 10.1016/j.ymben.2012.01.004. Epub 2012 Feb 1.
7
Synthetic biology in Streptomyces bacteria.链霉菌中的合成生物学。
Methods Enzymol. 2011;497:485-502. doi: 10.1016/B978-0-12-385075-1.00021-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验