Delemotte Lucie, Klein Michael L, Tarek Mounir
Equipe de Chimie et Biochimie Théoriques, UMR Synthèse et Réactivité de Systèmes Moléculaires Complexes, Centre National de la Recherche Scientifique Université de Lorraine Nancy, France.
Front Pharmacol. 2012 May 25;3:97. doi: 10.3389/fphar.2012.00097. eCollection 2012.
Since their discovery in the 1950s, the structure and function of voltage-gated cation channels (VGCC) has been largely understood thanks to results stemming from electrophysiology, pharmacology, spectroscopy, and structural biology. Over the past decade, computational methods such as molecular dynamics (MD) simulations have also contributed, providing molecular level information that can be tested against experimental results, thereby allowing the validation of the models and protocols. Importantly, MD can shed light on elements of VGCC function that cannot be easily accessed through "classical" experiments. Here, we review the results of recent MD simulations addressing key questions that pertain to the function and modulation of the VGCC's voltage-sensor domain (VSD) highlighting: (1) the movement of the S4-helix basic residues during channel activation, articulating how the electrical driving force acts upon them; (2) the nature of the VSD intermediate states on transitioning between open and closed states of the VGCC; and (3) the molecular level effects on the VSD arising from mutations of specific S4 positively charged residues involved in certain genetic diseases.
自20世纪50年代电压门控阳离子通道(VGCC)被发现以来,得益于电生理学、药理学、光谱学和结构生物学的研究成果,其结构和功能已得到了很大程度的了解。在过去十年中,诸如分子动力学(MD)模拟等计算方法也发挥了作用,提供了可根据实验结果进行检验的分子水平信息,从而使模型和方案得到验证。重要的是,MD能够揭示通过“经典”实验难以获取的VGCC功能要素。在此,我们回顾了近期MD模拟的结果,这些结果解决了与VGCC电压传感器结构域(VSD)的功能和调节相关的关键问题,重点如下:(1)通道激活过程中S4螺旋碱性残基的移动,阐明电驱动力如何作用于它们;(2)VGCC在开放和关闭状态之间转换时VSD中间状态的性质;(3)某些遗传性疾病中涉及的特定S4带正电荷残基突变对VSD产生的分子水平影响。