Suppr超能文献

肺循环数值建模的考量——以肺动脉高压为重点的综述

Considerations for numerical modeling of the pulmonary circulation--a review with a focus on pulmonary hypertension.

作者信息

Kheyfets V O, O'Dell W, Smith T, Reilly J J, Finol E A

机构信息

Department of Biomedical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.

出版信息

J Biomech Eng. 2013 Jun;135(6):61011-15. doi: 10.1115/1.4024141.

Abstract

Both in academic research and in clinical settings, virtual simulation of the cardiovascular system can be used to rapidly assess complex multivariable interactions between blood vessels, blood flow, and the heart. Moreover, metrics that can only be predicted with computational simulations (e.g., mechanical wall stress, oscillatory shear index, etc.) can be used to assess disease progression, for presurgical planning, and for interventional outcomes. Because the pulmonary vasculature is susceptible to a wide range of pathologies that directly impact and are affected by the hemodynamics (e.g., pulmonary hypertension), the ability to develop numerical models of pulmonary blood flow can be invaluable to the clinical scientist. Pulmonary hypertension is a devastating disease that can directly benefit from computational hemodynamics when used for diagnosis and basic research. In the present work, we provide a clinical overview of pulmonary hypertension with a focus on the hemodynamics, current treatments, and their limitations. Even with a rich history in computational modeling of the human circulation, hemodynamics in the pulmonary vasculature remains largely unexplored. Thus, we review the tasks involved in developing a computational model of pulmonary blood flow, namely vasculature reconstruction, meshing, and boundary conditions. We also address how inconsistencies between models can result in drastically different flow solutions and suggest avenues for future research opportunities. In its current state, the interpretation of this modeling technology can be subjective in a research environment and impractical for clinical practice. Therefore, considerations must be taken into account to make modeling reliable and reproducible in a laboratory setting and amenable to the vascular clinic. Finally, we discuss relevant existing models and how they have been used to gain insight into cardiopulmonary physiology and pathology.

摘要

在学术研究和临床环境中,心血管系统的虚拟模拟可用于快速评估血管、血流和心脏之间复杂的多变量相互作用。此外,只能通过计算模拟预测的指标(如机械壁应力、振荡剪切指数等)可用于评估疾病进展、术前规划和介入治疗结果。由于肺血管系统易受多种直接影响血流动力学并受其影响的病理状况(如肺动脉高压)的影响,因此开发肺血流数值模型的能力对临床科学家来说可能非常宝贵。肺动脉高压是一种毁灭性疾病,在用于诊断和基础研究时,计算血流动力学可直接使其受益。在本研究中,我们提供了肺动脉高压的临床概述,重点关注血流动力学、当前治疗方法及其局限性。尽管人类循环系统的计算建模历史悠久,但肺血管系统中的血流动力学在很大程度上仍未得到探索。因此,我们回顾了开发肺血流计算模型所涉及的任务,即血管重建、网格划分和边界条件。我们还讨论了模型之间的不一致如何导致截然不同的血流解决方案,并提出了未来研究机会的途径。就其目前的状态而言,这种建模技术在研究环境中的解释可能具有主观性,并且在临床实践中不切实际。因此,必须考虑各种因素,以使建模在实验室环境中可靠且可重复,并适用于血管临床。最后,我们讨论了相关的现有模型以及它们如何被用于深入了解心肺生理学和病理学。

相似文献

2
Patient-Specific Computational Analysis of Hemodynamics in Adult Pulmonary Hypertension.
Ann Biomed Eng. 2021 Dec;49(12):3465-3480. doi: 10.1007/s10439-021-02884-y. Epub 2021 Nov 19.
3
Evolution of hemodynamic forces in the pulmonary tree with progressively worsening pulmonary arterial hypertension in pediatric patients.
Biomech Model Mechanobiol. 2019 Jun;18(3):779-796. doi: 10.1007/s10237-018-01114-0. Epub 2019 Jan 12.
4
Image-based computational assessment of vascular wall mechanics and hemodynamics in pulmonary arterial hypertension patients.
J Biomech. 2018 Feb 8;68:84-92. doi: 10.1016/j.jbiomech.2017.12.022. Epub 2017 Dec 27.
6
Patient-specific computational modeling of blood flow in the pulmonary arterial circulation.
Comput Methods Programs Biomed. 2015 Jul;120(2):88-101. doi: 10.1016/j.cmpb.2015.04.005. Epub 2015 Apr 28.
9
Cardiovascular mechanics in the early stages of pulmonary hypertension: a computational study.
Biomech Model Mechanobiol. 2017 Dec;16(6):2093-2112. doi: 10.1007/s10237-017-0940-4. Epub 2017 Jul 21.
10
Influence of anatomical dominance and hypertension on coronary conduit arterial and microcirculatory flow patterns: a multiscale modeling study.
Am J Physiol Heart Circ Physiol. 2016 Jul 1;311(1):H11-23. doi: 10.1152/ajpheart.00997.2015. Epub 2016 May 3.

引用本文的文献

1
Pulmonary Vascular Compromise Is Associated With Survival in Pediatric Pulmonary Hypertension: A New Computational Model.
Pulm Circ. 2025 Sep 1;15(3):e70156. doi: 10.1002/pul2.70156. eCollection 2025 Jul.
2
Dissecting contributions of pulmonary arterial remodeling to right ventricular afterload in pulmonary hypertension.
Bioeng Transl Med. 2025 Jun 26;10(4):e70035. doi: 10.1002/btm2.70035. eCollection 2025 Jul.
6
Estimation of pulmonary vascular resistance for Glenn physiology.
PLoS One. 2024 Jul 26;19(7):e0307890. doi: 10.1371/journal.pone.0307890. eCollection 2024.
7
A perfectly imperfect engine: Utilizing the digital twin paradigm in pulmonary hypertension.
Pulm Circ. 2024 Jun 25;14(2):e12392. doi: 10.1002/pul2.12392. eCollection 2024 Apr.
8
Guidelines for mechanistic modeling and analysis in cardiovascular research.
Am J Physiol Heart Circ Physiol. 2024 Aug 1;327(2):H473-H503. doi: 10.1152/ajpheart.00766.2023. Epub 2024 Jun 21.
9
In-silico enhanced animal study of pulmonary artery pressure sensors: assessing hemodynamics using computational fluid dynamics.
Front Cardiovasc Med. 2023 Sep 7;10:1193209. doi: 10.3389/fcvm.2023.1193209. eCollection 2023.
10
Simulating Multi-Scale Pulmonary Vascular Function by Coupling Computational Fluid Dynamics With an Anatomic Network Model.
Front Netw Physiol. 2022 Apr 25;2:867551. doi: 10.3389/fnetp.2022.867551. eCollection 2022.

本文引用的文献

2
4
A critical analysis of survival in pulmonary arterial hypertension.
Eur Respir Rev. 2012 Sep 1;21(125):218-22. doi: 10.1183/09059180.00003512.
5
Prognostication in pulmonary arterial hypertension.
Heart Fail Clin. 2012 Jul;8(3):373-83. doi: 10.1016/j.hfc.2012.04.011.
6
Imaging in the evaluation of pulmonary artery hemodynamics and right ventricular structure and function.
Heart Fail Clin. 2012 Jul;8(3):353-72. doi: 10.1016/j.hfc.2012.04.004. Epub 2012 May 17.
7
Predicting survival in pulmonary arterial hypertension in the UK.
Eur Respir J. 2012 Sep;40(3):604-11. doi: 10.1183/09031936.00196611. Epub 2012 May 3.
8
A new flow co-culture system for studying mechanobiology effects of pulse flow waves.
Cytotechnology. 2012 Dec;64(6):649-66. doi: 10.1007/s10616-012-9445-2. Epub 2012 Apr 18.
10
Validation of a 3D computational fluid-structure interaction model simulating flow through an elastic aperture.
J Biomech. 2012 Jan 10;45(2):310-8. doi: 10.1016/j.jbiomech.2011.10.020. Epub 2011 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验