Cushing Anna, Flaherty Patrick, Hopmans Erik, Bell John M, Ji Hanlee P
Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
BMC Res Notes. 2013 May 23;6:206. doi: 10.1186/1756-0500-6-206.
Rare single nucleotide variants play an important role in genetic diversity and heterogeneity of specific human disease. For example, an individual clinical sample can harbor rare mutations at minor frequencies. Genetic diversity within an individual clinical sample is oftentimes reflected in rare mutations. Therefore, detecting rare variants prior to treatment may prove to be a useful predictor for therapeutic response. Current rare variant detection algorithms using next generation DNA sequencing are limited by inherent sequencing error rate and platform availability.
Here we describe an optimized implementation of a rare variant detection algorithm called RVD for use in targeted gene resequencing. RVD is available both as a command-line program and for use in MATLAB and estimates context-specific error using a beta-binomial model to call variants with minor allele frequency (MAF) as low as 0.1%. We show that RVD accepts standard BAM formatted sequence files. We tested RVD analysis on multiple Illumina sequencing platforms, among the most widely used DNA sequencing platforms.
RVD meets a growing need for highly sensitive and specific tools for variant detection. To demonstrate the usefulness of RVD, we carried out a thorough analysis of the software's performance on synthetic and clinical virus samples sequenced on both an Illumina GAIIx and a MiSeq. We expect RVD can improve understanding the genetics and treatment of common viral diseases including influenza. RVD is available at the following URL:http://dna-discovery.stanford.edu/software/rvd/.
罕见单核苷酸变异在特定人类疾病的遗传多样性和异质性中起重要作用。例如,单个临床样本可能携带低频的罕见突变。个体临床样本中的遗传多样性通常反映在罕见突变中。因此,在治疗前检测罕见变异可能被证明是治疗反应的有用预测指标。目前使用下一代DNA测序的罕见变异检测算法受到固有测序错误率和平台可用性的限制。
在此,我们描述了一种名为RVD的罕见变异检测算法的优化实现,用于靶向基因重测序。RVD既可以作为命令行程序使用,也可以在MATLAB中使用,并使用贝塔二项式模型估计特定上下文错误,以调用次要等位基因频率(MAF)低至0.1%的变异。我们表明,RVD接受标准BAM格式的序列文件。我们在多个Illumina测序平台(最广泛使用的DNA测序平台之一)上测试了RVD分析。
RVD满足了对高度敏感和特异的变异检测工具日益增长的需求。为了证明RVD的有用性,我们对在Illumina GAIIx和MiSeq上测序的合成和临床病毒样本进行了该软件性能的全面分析。我们期望RVD能够增进对包括流感在内的常见病毒性疾病的遗传学和治疗方法的理解。RVD可通过以下网址获取:http://dna-discovery.stanford.edu/software/rvd/ 。