Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
Neuroimage. 2013 Oct 15;80:80-104. doi: 10.1016/j.neuroimage.2013.05.012. Epub 2013 May 21.
The Human Connectome Project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce 'functional connectivity'; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3T, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 s for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total dMRI data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 T magnetic field are also presented, targeting higher spatial resolution, enhanced specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields, and reduced power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure.
人类连接组计划(HCP)主要依赖于三种互补的磁共振(MR)方法。这些方法是:1)静息态功能磁共振成像(rfMRI),它利用 fMRI 时间序列中时间波动的相关性来推断“功能连接”;2)扩散成像(dMRI),为用于重建复杂轴突纤维结构的轨迹算法提供输入;3)基于任务的功能磁共振成像(tfMRI),用于识别人类大脑中的功能分区,以协助分析前两种方法获得的数据。我们描述了这些方法的技术改进和优化,以及影响 3T 下 fMRI 和 dMRI 图像采集速度的仪器选择,从而实现了全脑覆盖,fMRI 的各向同性分辨率为 2 毫米,用于轨迹分析的 dMRI 数据的各向同性分辨率为 1.25 毫米,总 dMRI 数据采集时间减少了三分之一。还介绍了在 7T 磁场下获取类似数据的正在进行的技术开发和优化,以实现更高的空间分辨率、增强功能成像信号的特异性、减轻不均匀射频(RF)场以及降低功率沉积。结果表明,总的来说,这些方法代表了人类大脑磁共振成像在研究大脑功能和结构方面的重大进展。