Suppr超能文献

在微流控装置内将人内皮细胞和胚胎干细胞衍生的周细胞进行三维共培养。

Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device.

机构信息

BIOS/Lab on a Chip, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands.

出版信息

Lab Chip. 2013 Sep 21;13(18):3562-8. doi: 10.1039/c3lc50435b.

Abstract

Organs-on-chips are microengineered in vitro tissue structures that can be used as platforms for physiological and pathological research. They provide tissue-like microenvironments in which different cell types can be co-cultured in a controlled manner to create synthetic organ mimics. Blood vessels are an integral part of all tissues in the human body. Development of vascular structures is therefore an important research topic for advancing the field of organs-on-chips since generated tissues will require a blood or nutrient supply. Here, we have engineered three-dimensional constructs of vascular tissue inside microchannels by injecting a mixture of human umbilical vein endothelial cells, human embryonic stem cell-derived pericytes (the precursors of vascular smooth muscle cells) and rat tail collagen I into a polydimethylsiloxane microfluidic channel with dimensions 500 μm × 120 μm × 1 cm (w × h × l). Over the course of 12 h, the cells organized themselves into a single long tube resembling a blood vessel that followed the contours of the channel. Detailed examination of tube morphology by confocal microscopy revealed a mature endothelial monolayer with complete PECAM-1 staining at cell-cell contacts and pericytes incorporated inside the tubular structures. We also demonstrated that tube formation was disrupted in the presence of a neutralizing antibody against transforming growth factor-beta (TGF-β). The TGF-β signaling pathway is essential for normal vascular development; deletion of any of its components in mouse development results in defective vasculogenesis and angiogenesis and mutations in humans have been linked to multiple vascular genetic diseases. In the engineered microvessels, inhibition of TGF-β signaling resulted in tubes with smaller diameters and higher tortuosity, highly reminiscent of the abnormal vessels observed in patients with one particular vascular disease known as hereditary hemorrhagic telangiectasia (HHT). In summary, we have developed microengineered three-dimensional vascular structures that can be used as a model to test the effects of drugs and study the interaction between different human vascular cell types. In the future, the model may be integrated into larger tissue constructs to advance the development of organs-on-chips.

摘要

器官芯片是一种微工程化的体外组织结构,可用作生理和病理研究的平台。它们提供类组织的微环境,不同类型的细胞可以在其中以受控的方式共培养,从而创建合成器官模拟物。血管是人体所有组织的组成部分。因此,血管结构的发育是器官芯片领域的一个重要研究课题,因为生成的组织将需要血液或营养供应。在这里,我们通过将人脐静脉内皮细胞、人胚胎干细胞衍生的周细胞(血管平滑肌细胞的前体)和大鼠尾巴胶原蛋白 I 的混合物注入尺寸为 500μm×120μm×1cm(w×h×l)的聚二甲基硅氧烷微流控通道中,在微通道内构建了三维血管组织。在 12 小时内,细胞自行组织成类似于血管的单个长管,该管沿着通道的轮廓排列。通过共聚焦显微镜对管形态的详细检查显示,内皮细胞单层具有完整的 PECAM-1 染色,在细胞-细胞连接处,周细胞被包含在管状结构内。我们还证明,在存在针对转化生长因子-β(TGF-β)的中和抗体的情况下,管形成会受到破坏。TGF-β 信号通路对于正常的血管发育至关重要;在小鼠发育过程中,其任何成分的缺失都会导致血管生成和血管生成缺陷,而人类的突变与多种血管遗传疾病有关。在工程化的微血管中,TGF-β 信号通路的抑制导致管腔直径更小,扭曲度更高,这与遗传性出血性毛细血管扩张症(HHT)等特定血管疾病患者中观察到的异常血管非常相似。总之,我们已经开发出了可用于测试药物作用和研究不同人类血管细胞类型之间相互作用的微工程化三维血管结构模型。将来,该模型可能会被整合到更大的组织构建体中,以推进器官芯片的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验