Austin Steven R, Wong Yu-Ning, Uzzo Robert G, Beck J Robert, Egleston Brian L
*Whiting School of Engineering Undergraduate Student, Johns Hopkins University, Baltimore, MD Departments of †Medical Oncology ‡Surgery, Fox Chase Cancer Center §Academic Affairs, Fox Chase Cancer Center, Temple University Health System ∥Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA.
Med Care. 2015 Sep;53(9):e65-72. doi: 10.1097/MLR.0b013e318297429c.
Comorbidity adjustment is an important component of health services research and clinical prognosis. When adjusting for comorbidities in statistical models, researchers can include comorbidities individually or through the use of summary measures such as the Charlson Comorbidity Index or Elixhauser score. We examined the conditions under which individual versus summary measures are most appropriate.
We provide an analytic proof of the utility of comorbidity summary measures when used in place of individual comorbidities. We compared the use of the Charlson and Elixhauser scores versus individual comorbidities in prognostic models using a SEER-Medicare data example. We examined the ability of summary comorbidity measures to adjust for confounding using simulations.
We devised a mathematical proof that found that the comorbidity summary measures are appropriate prognostic or adjustment mechanisms in survival analyses. Once one knows the comorbidity score, no other information about the comorbidity variables used to create the score is generally needed. Our data example and simulations largely confirmed this finding.
Summary comorbidity measures, such as the Charlson Comorbidity Index and Elixhauser scores, are commonly used for clinical prognosis and comorbidity adjustment. We have provided a theoretical justification that validates the use of such scores under many conditions. Our simulations generally confirm the utility of the summary comorbidity measures as substitutes for use of the individual comorbidity variables in health services research. One caveat is that a summary measure may only be as good as the variables used to create it.
合并症调整是卫生服务研究和临床预后的重要组成部分。在统计模型中对合并症进行调整时,研究人员可以单独纳入合并症,也可以通过使用诸如查尔森合并症指数或埃利克斯豪泽评分等综合指标来进行。我们研究了单独使用合并症与综合指标在何种情况下最为合适。
我们提供了一个分析证明,说明了合并症综合指标替代单独合并症时的效用。我们以监测、流行病学和最终结果(SEER)医保数据为例,比较了在预后模型中使用查尔森和埃利克斯豪泽评分与单独合并症的情况。我们通过模拟研究了合并症综合指标调整混杂因素的能力。
我们设计了一个数学证明,发现合并症综合指标在生存分析中是合适的预后或调整机制。一旦知道了合并症评分,通常就不需要关于用于创建该评分的合并症变量的其他信息。我们的数据示例和模拟在很大程度上证实了这一发现。
合并症综合指标,如查尔森合并症指数和埃利克斯豪泽评分,常用于临床预后和合并症调整。我们提供了一种理论依据,验证了在许多情况下使用此类评分的合理性。我们的模拟总体上证实了合并症综合指标在卫生服务研究中替代单独合并症变量使用的效用。一个需要注意的是,综合指标的质量可能仅与用于创建它的变量一样好。