IEEE Trans Image Process. 2013 Dec;22(12):4640-51. doi: 10.1109/TIP.2013.2277780. Epub 2013 Aug 8.
Two novel unsupervised dimensionality reduction techniques, termed sparse distance preserving embedding (SDPE) and sparse proximity preserving embedding (SPPE), are proposed for feature extraction and classification. SDPE and SPPE perform in the clean data space recovered by sparse representation and enhanced Euclidean distances over noise removed data are employed to measure pairwise similarities of points. In extracting informative features, SDPE and SPPE aim at preserving pairwise similarities between data points in addition to preserving the sparse characteristics. This paper calculates the sparsest representation of all vectors jointly by a convex optimization. The sparsest codes enable certain local information of data to be preserved, and can endow SDPE and SPPE a natural discriminating power, adaptive neighborhood and robust characteristic against noise and errors in delivering low-dimensional embeddings. We also mathematically show SDPE and SPPE can be effectively extended for discriminant learning in a supervised manner. The validity of SDPE and SPPE is examined by extensive simulations. Comparison with other related state-of-the-art unsupervised algorithms show that promising results are delivered by our techniques.
提出了两种新的无监督降维技术,称为稀疏距离保持嵌入(SDPE)和稀疏相似性保持嵌入(SPPE),用于特征提取和分类。SDPE 和 SPPE 在稀疏表示恢复的干净数据空间中执行,并使用去除噪声后的数据增强欧几里得距离来测量点之间的成对相似性。在提取信息特征时,SDPE 和 SPPE 旨在在保留数据点之间的成对相似性的同时保留稀疏特征。本文通过凸优化联合计算所有向量的最稀疏表示。最稀疏的代码可以保留数据的某些局部信息,并使 SDPE 和 SPPE 具有自然的判别能力、自适应邻域和对噪声和错误的鲁棒性,从而提供低维嵌入。我们还从数学上证明了 SDPE 和 SPPE 可以有效地扩展为有监督的判别学习。通过广泛的仿真验证了 SDPE 和 SPPE 的有效性。与其他相关的最先进的无监督算法的比较表明,我们的技术提供了有希望的结果。