Suppr超能文献

一种用于真实世界纹理和外观分类的主动补丁模型。

An Active Patch Model for Real World Texture and Appearance Classification.

作者信息

Mao Junhua, Zhu Jun, Yuille Alan L

出版信息

Comput Vis ECCV. 2014 Sep 6;8691:140-155. doi: 10.1007/978-3-319-10578-9_10.

Abstract

This paper addresses the task of natural texture and appearance classification. Our goal is to develop a simple and intuitive method that performs at state of the art on datasets ranging from homogeneous texture (e.g., material texture), to less homogeneous texture (e.g., the fur of animals), and to inhomogeneous texture (the appearance patterns of vehicles). Our method uses a bag-of-words model where the features are based on a dictionary of active patches. Active patches are raw intensity patches which can undergo spatial transformations (e.g., rotation and scaling) and adjust themselves to best match the image regions. The dictionary of active patches is required to be compact and representative, in the sense that we can use it to approximately reconstruct the images that we want to classify. We propose a probabilistic model to quantify the quality of image reconstruction and design a greedy learning algorithm to obtain the dictionary. We classify images using the occurrence frequency of the active patches. Feature extraction is fast (about 100 ms per image) using the GPU. The experimental results show that our method improves the state of the art on a challenging material texture benchmark dataset (KTH-TIPS2). To test our method on less homogeneous or inhomogeneous images, we construct two new datasets consisting of appearance image patches of animals and vehicles cropped from the PASCAL VOC dataset. Our method outperforms competing methods on these datasets.

摘要

本文探讨自然纹理和外观分类任务。我们的目标是开发一种简单直观的方法,该方法在从均匀纹理(如材料纹理)到不太均匀纹理(如动物皮毛)再到不均匀纹理(车辆外观图案)的数据集上达到当前最优水平。我们的方法使用词袋模型,其中特征基于活动补丁字典。活动补丁是原始强度补丁,可进行空间变换(如旋转和缩放)并自我调整以最佳匹配图像区域。活动补丁字典需要紧凑且具有代表性,即我们可以用它来近似重建我们想要分类的图像。我们提出一种概率模型来量化图像重建质量,并设计一种贪婪学习算法来获取字典。我们使用活动补丁的出现频率对图像进行分类。使用GPU时,特征提取速度很快(每张图像约100毫秒)。实验结果表明,我们的方法在具有挑战性的材料纹理基准数据集(KTH - TIPS2)上改进了当前最优水平。为了在不太均匀或不均匀的图像上测试我们的方法,我们从PASCAL VOC数据集中裁剪出动物和车辆外观图像补丁,构建了两个新数据集。我们的方法在这些数据集上优于竞争方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c65/4270015/b2832855ff1a/nihms614047f1.jpg

相似文献

2
Modeling Image Patches with a Generic Dictionary of Mini-Epitomes.使用微型缩影通用字典对图像块进行建模。
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2014 Jun;2014:2059-2066. doi: 10.1109/CVPR.2014.264.
3
Texture classification from random features.随机特征纹理分类。
IEEE Trans Pattern Anal Mach Intell. 2012 Mar;34(3):574-86. doi: 10.1109/TPAMI.2011.145.
5
Texture Representations Using Subspace Embeddings.使用子空间嵌入的纹理表示
Pattern Recognit Lett. 2013 Jul 15;34(10):1130-1137. doi: 10.1016/j.patrec.2013.03.009.
7
Image Quality Assessment: Unifying Structure and Texture Similarity.图像质量评估:结构与纹理相似性的统一。
IEEE Trans Pattern Anal Mach Intell. 2022 May;44(5):2567-2581. doi: 10.1109/TPAMI.2020.3045810. Epub 2022 Apr 1.
8
Texture Classification in Extreme Scale Variations Using GANet.使用GANet进行极端尺度变化下的纹理分类。
IEEE Trans Image Process. 2019 Aug;28(8):3910-3922. doi: 10.1109/TIP.2019.2903300. Epub 2019 Mar 8.
9
A dictionary learning approach for human sperm heads classification.字典学习方法在人类精子头分类中的应用。
Comput Biol Med. 2017 Dec 1;91:181-190. doi: 10.1016/j.compbiomed.2017.10.009. Epub 2017 Oct 10.
10
Image Inpainting Using Nonlocal Texture Matching and Nonlinear Filtering.基于非局部纹理匹配和非线性滤波的图像修复。
IEEE Trans Image Process. 2019 Apr;28(4):1705-1719. doi: 10.1109/TIP.2018.2880681. Epub 2018 Nov 12.

引用本文的文献

1
Fine-grained recognition of plants from images.基于图像的植物细粒度识别。
Plant Methods. 2017 Dec 21;13:115. doi: 10.1186/s13007-017-0265-4. eCollection 2017.

本文引用的文献

2
Modeling Image Patches with a Generic Dictionary of Mini-Epitomes.使用微型缩影通用字典对图像块进行建模。
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2014 Jun;2014:2059-2066. doi: 10.1109/CVPR.2014.264.
3
WLD: a robust local image descriptor.WLD:一种强大的局部图像描述符。
IEEE Trans Pattern Anal Mach Intell. 2010 Sep;32(9):1705-20. doi: 10.1109/TPAMI.2009.155.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验