Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Comput Math Methods Med. 2013;2013:545613. doi: 10.1155/2013/545613. Epub 2013 Apr 28.
Recently, data with complex characteristics such as epilepsy electroencephalography (EEG) time series has emerged. Epilepsy EEG data has special characteristics including nonlinearity, nonnormality, and nonperiodicity. Therefore, it is important to find a suitable forecasting method that covers these special characteristics. In this paper, we propose a coercively adjusted autoregression (CA-AR) method that forecasts future values from a multivariable epilepsy EEG time series. We use the technique of random coefficients, which forcefully adjusts the coefficients with -1 and 1. The fractal dimension is used to determine the order of the CA-AR model. We applied the CA-AR method reflecting special characteristics of data to forecast the future value of epilepsy EEG data. Experimental results show that when compared to previous methods, the proposed method can forecast faster and accurately.
最近,出现了一些具有复杂特征的数据,如癫痫脑电 (EEG) 时间序列。癫痫 EEG 数据具有非线性、非正态性和非周期性等特殊特征。因此,找到一种能够涵盖这些特殊特征的合适预测方法非常重要。在本文中,我们提出了一种强制调整自回归 (CA-AR) 方法,该方法可从多变量癫痫 EEG 时间序列中预测未来值。我们使用随机系数技术,强制将系数调整为-1 和 1。分形维数用于确定 CA-AR 模型的阶数。我们应用反映数据特殊特征的 CA-AR 方法来预测癫痫 EEG 数据的未来值。实验结果表明,与之前的方法相比,所提出的方法可以更快、更准确地进行预测。