Winterhalder M, Maiwald T, Voss H U, Aschenbrenner-Scheibe R, Timmer J, Schulze-Bonhage A
Epilepsy Center, University of Freiburg, Breisacher Strasse 64, 79106 Freiburg, Germany.
Epilepsy Behav. 2003 Jun;4(3):318-25. doi: 10.1016/s1525-5050(03)00105-7.
The unpredictability of seizures is a central problem for all patients suffering from uncontrolled epilepsy. Recently, numerous methods have been suggested that claim to predict from the EEG the onset of epileptic seizures. In parallel, new therapeutic devices are in development that could control upcoming seizures provided that their onset is known in advance. A reliable clinical application controlling seizures, consisting of a seizure prediction method and an intervention system, would improve patient quality of life. The question therefore arises as to whether the performance of the seizure prediction methods is already sufficient for clinical applications. The answer requires assessment criteria to judge and compare these methods, but recognized criteria still do not exist. Based on clinical, behavioral, and statistical considerations, we suggest the "seizure prediction characteristic" to evaluate seizure prediction methods. Results of this approach are exemplified by its application to the "dynamical similarity index" seizure prediction method using 582 hours of intracranial EEG data, including 88 seizures.
癫痫发作的不可预测性是所有患有未得到控制的癫痫症患者面临的核心问题。最近,人们提出了许多方法,声称可以从脑电图中预测癫痫发作的开始。与此同时,新的治疗设备正在研发中,只要能提前知道即将发作的癫痫,这些设备就能控制发作。一个可靠的控制癫痫发作的临床应用,包括癫痫发作预测方法和干预系统,将改善患者的生活质量。因此,问题就出现了,即癫痫发作预测方法的性能是否已经足以用于临床应用。答案需要评估标准来判断和比较这些方法,但目前仍不存在公认的标准。基于临床、行为和统计方面的考虑,我们建议使用“癫痫发作预测特征”来评估癫痫发作预测方法。这种方法的结果通过将其应用于使用582小时颅内脑电图数据(包括88次癫痫发作)的“动态相似性指数”癫痫发作预测方法得到了例证。