Departamento de Óptica, Universitat de València, Burjassot, Spain.
Ophthalmic Physiol Opt. 2013 Jul;33(4):467-81. doi: 10.1111/opo.12073. Epub 2013 May 27.
Previous studies have highlighted that power matrices fully characterize the concept of dioptric power of any astigmatic surface. Thus, the basic equations in physiological optics can be generalized using the matrix formalism of the dioptric power. Among others, lateral magnification has also been interpreted as a matrix but mainly concerning magnification modification induced by spectacle correction of refractive error.
To provide a fresh look into a novel paraxial formulation for the assessment of the lateral magnification using power matrices and in presence of astigmatism for thin and thick imaging systems in general.
Linear optics provides the frame to generalize into a matrix the lateral magnification concept. Using the power matrix formalism, a lateral magnification matrix is derived in virtue of the dioptric power matrix and the object's reduced axial object distance for the paraxial case. In addition, two different degrees of approximation (thin lens and distant object approximations) are analyzed to further simplify the calculations.
A general formulation of the lateral magnification matrix is obtained and validated by numerical examples showing its applicability to different examples in geometrical and physiological optics. As particular case of interest, the degree of asymmetry of the lateral magnification matrix has been derived from the degree of asymmetry of the dioptric power matrix when dealing with obliquely crossed astigmatic thick lenses.
The new formulation is applicable under paraxial approximation and is useful for arbitrary thin and thick imaging systems in any media of homogeneous index of refraction (air and others) and including obliquely crossed astigmatic surfaces. The proposed formulation also yields in a novel interpretation of the lateral magnification matrix concept.
先前的研究已经强调,功率矩阵完全描述了任何像散表面的屈光度概念。因此,可以使用屈光力的矩阵形式来推广生理光学中的基本方程。除其他外,横向放大率也被解释为一个矩阵,但主要涉及矫正屈光不正的眼镜对放大率的修正。
为了提供一个新的视角来看待使用功率矩阵评估存在像散时薄厚成像系统的横向放大率的新近轴公式。
线性光学为将横向放大率概念推广为矩阵提供了框架。利用屈光力矩阵形式,推导出了近轴情况下的横向放大率矩阵,涉及屈光力矩阵和物体的轴向物体距离的减小。此外,还分析了两种不同的近似程度(薄透镜和远距离物体近似)来进一步简化计算。
得到了一个通用的横向放大率矩阵的公式,并通过数值例子验证了其适用性,这些例子涉及到几何和生理光学中的不同例子。作为一个特别感兴趣的例子,当处理斜交像散厚透镜时,从屈光力矩阵的不对称程度推导出了横向放大率矩阵的不对称程度。
新的公式适用于近轴近似情况,可用于任何均匀折射率(空气等)的任意薄厚成像系统,包括斜交像散表面。所提出的公式还对横向放大率矩阵概念提供了新的解释。