Van Otterloo Eric, Cornell Robert A, Medeiros Daniel Meulemans, Garnett Aaron T
Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA.
Genesis. 2013 Jul;51(7):457-70. doi: 10.1002/dvg.22403. Epub 2013 Jun 25.
The appearance of novel anatomic structures during evolution is driven by changes to the networks of transcription factors, signaling pathways, and downstream effector genes controlling development. The nature of the changes to these developmental gene regulatory networks (GRNs) is poorly understood. A striking test case is the evolution of the GRN controlling development of the neural crest (NC). NC cells emerge from the neural plate border (NPB) and contribute to multiple adult structures. While all chordates have a NPB, only in vertebrates do NPB cells express all the genes constituting the neural crest GRN (NC-GRN). Interestingly, invertebrate chordates express orthologs of NC-GRN components in other tissues, revealing that during vertebrate evolution new regulatory connections emerged between transcription factors primitively expressed in the NPB and genes primitively expressed in other tissues. Such interactions could have evolved by two mechanisms. First, transcription factors primitively expressed in the NPB may have evolved new DNA and/or cofactor binding properties (protein neofunctionalization). Alternately, cis-regulatory elements driving NPB expression may have evolved near genes primitively expressed in other tissues (cis-regulatory neofunctionalization). Here we discuss how gene duplication can, in principle, promote either form of neofunctionalization. We review recent published examples of interspecies gene-swap, or regulatory-element-swap, experiments that test both models. Such experiments have yielded little evidence to support the importance of protein neofunctionalization in the emergence of the NC-GRN, but do support the importance of novel cis-regulatory elements in this process. The NC-GRN is an excellent model for the study of gene regulatory and macroevolutionary innovation.
在进化过程中,新解剖结构的出现是由控制发育的转录因子网络、信号通路和下游效应基因的变化驱动的。对这些发育基因调控网络(GRN)变化的本质了解甚少。一个引人注目的测试案例是控制神经嵴(NC)发育的GRN的进化。NC细胞从神经板边界(NPB)出现,并对多种成体结构有贡献。虽然所有脊索动物都有NPB,但只有在脊椎动物中,NPB细胞才表达构成神经嵴GRN(NC-GRN)的所有基因。有趣的是,无脊椎脊索动物在其他组织中表达NC-GRN成分的直系同源物,这表明在脊椎动物进化过程中,在NPB中原始表达的转录因子与在其他组织中原始表达的基因之间出现了新的调控连接。这种相互作用可能通过两种机制进化而来。首先,在NPB中原始表达的转录因子可能进化出了新的DNA和/或辅因子结合特性(蛋白质新功能化)。或者,驱动NPB表达的顺式调控元件可能在其他组织中原始表达的基因附近进化(顺式调控新功能化)。在这里,我们讨论基因复制原则上如何促进这两种新功能化形式。我们回顾了最近发表的种间基因交换或调控元件交换实验的例子,这些实验对两种模型都进行了测试。此类实验几乎没有证据支持蛋白质新功能化在NC-GRN出现中的重要性,但确实支持了新顺式调控元件在此过程中的重要性。NC-GRN是研究基因调控和宏观进化创新的一个优秀模型。