Disease Glycomics Team, Systems Glycobiology Research Group, Global Research Cluster, RIKEN Max Plank Joint Research Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Mol Cell Proteomics. 2013 Sep;12(9):2468-80. doi: 10.1074/mcp.M112.027151. Epub 2013 May 29.
Nucleotide sugars are the donor substrates of various glycosyltransferases, and an important building block in N- and O-glycan biosynthesis. Their intercellular concentrations are regulated by cellular metabolic states including diseases such as cancer and diabetes. To investigate the fate of UDP-GlcNAc, we developed a tracing method for UDP-GlcNAc synthesis and use, and GlcNAc utilization using (13)C6-glucose and (13)C2-glucosamine, respectively, followed by the analysis of mass isotopomers using LC-MS. Metabolic labeling of cultured cells with (13)C6-glucose and the analysis of isotopomers of UDP-HexNAc (UDP-GlcNAc plus UDP-GalNAc) and CMP-NeuAc revealed the relative contributions of metabolic pathways leading to UDP-GlcNAc synthesis and use. In pancreatic insulinoma cells, the labeling efficiency of a (13)C6-glucose motif in CMP-NeuAc was lower compared with that in hepatoma cells. Using (13)C2-glucosamine, the diversity of the labeling efficiency was observed in each sugar residue of N- and O-glycans on the basis of isotopomer analysis. In the insulinoma cells, the low labeling efficiencies were found for sialic acids as well as tri- and tetra-sialo N-glycans, whereas asialo N-glycans were found to be abundant. Essentially no significant difference in secreted hyaluronic acids was found among hepatoma and insulinoma cell lines. This indicates that metabolic flows are responsible for the low sialylation in the insulinoma cells. Our strategy should be useful for systematically tracing each stage of cellular GlcNAc metabolism.
核苷酸糖是各种糖基转移酶的供体底物,也是 N-和 O-聚糖生物合成的重要构建块。它们的细胞内浓度受细胞代谢状态的调节,包括癌症和糖尿病等疾病。为了研究 UDP-GlcNAc 的命运,我们开发了一种追踪 UDP-GlcNAc 合成和利用的方法,分别使用 (13)C6-葡萄糖和 (13)C2-葡萄糖胺,然后使用 LC-MS 分析质量同位素分馏。用 (13)C6-葡萄糖对培养细胞进行代谢标记,并分析 UDP-HexNAc(UDP-GlcNAc 加 UDP-GalNAc)和 CMP-NeuAc 的同位素分馏,揭示了导致 UDP-GlcNAc 合成和利用的代谢途径的相对贡献。在胰腺胰岛素瘤细胞中,与肝癌细胞相比,CMP-NeuAc 中 (13)C6-葡萄糖基的标记效率较低。使用 (13)C2-葡萄糖胺,根据同位素分馏分析,观察到 N-和 O-聚糖中每个糖残基的标记效率的多样性。在胰岛素瘤细胞中,发现唾液酸以及三唾液酸和四唾液酸 N-聚糖的标记效率较低,而发现无唾液酸 N-聚糖丰富。在肝癌细胞系和胰岛素瘤细胞系之间,分泌的透明质酸没有明显差异。这表明代谢流负责胰岛素瘤细胞中低唾液酸化。我们的策略应该有助于系统地追踪细胞 GlcNAc 代谢的每个阶段。