Suppr超能文献

金黄色葡萄球菌噬菌体 vB_SauS-phiIPLA88 的噬菌体裂解蛋白具有多个活性催化结构域,不会引发葡萄球菌耐药性。

The phage lytic proteins from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 display multiple active catalytic domains and do not trigger staphylococcal resistance.

机构信息

DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas, Villaviciosa, Asturias, Spain.

出版信息

PLoS One. 2013 May 28;8(5):e64671. doi: 10.1371/journal.pone.0064671. Print 2013.

Abstract

The increase in antibiotic resistance world-wide revitalized the interest in the use of phage lysins to combat pathogenic bacteria. In this work, we analyzed the specific cleavage sites on the staphylococcal peptidoglycan produced by three phage lytic proteins. The investigated cell wall lytic enzymes were the endolysin LysH5 derived from the S. aureus bacteriophage vB_SauS-phi-IPLA88 (phi-IPLA88) and two fusion proteins between lysostaphin and the virion-associated peptidoglycan hydrolase HydH5 (HydH5SH3b and HydH5Lyso). We determined that all catalytic domains present in these proteins were active. Additionally, we tested for the emergence of resistant Staphylococcus aureus to any of the three phage lytic proteins constructs. Resistant S. aureus could not be identified after 10 cycles of bacterial exposure to phage lytic proteins either in liquid or plate cultures. However, a quick increase in lysostaphin resistance (up to 1000-fold in liquid culture) was observed. The lack of resistant development supports the use of phage lytic proteins as future therapeutics to treat staphylococcal infections.

摘要

全球范围内抗生素耐药性的增加重新激发了人们对噬菌体裂解酶用于对抗致病菌的兴趣。在这项工作中,我们分析了三种噬菌体裂解蛋白在葡萄球菌肽聚糖上产生的特定切割位点。研究的细胞壁裂解酶是来自金黄色葡萄球菌噬菌体 vB_SauS-phi-IPLA88(phi-IPLA88)的内溶素 LysH5 以及溶菌酶和病毒相关肽聚糖水解酶 HydH5 之间的两种融合蛋白(HydH5SH3b 和 HydH5Lyso)。我们确定了这些蛋白质中存在的所有催化结构域都是活性的。此外,我们还测试了耐三种噬菌体裂解蛋白构建体之一的金黄色葡萄球菌的出现。在液体或平板培养中,金黄色葡萄球菌暴露于噬菌体裂解蛋白 10 个循环后,仍无法鉴定出耐药菌。然而,在液体培养中,溶菌酶的耐药性迅速增加(高达 1000 倍)。耐药性发展的缺乏支持将噬菌体裂解蛋白用作治疗葡萄球菌感染的未来疗法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0be/3665550/9480709a577a/pone.0064671.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验