Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom.
ACS Nano. 2013 Jul 23;7(7):6024-30. doi: 10.1021/nn401759r. Epub 2013 Jun 7.
We combine DNA origami structures with glass nanocapillaries to reversibly form hybrid DNA origami nanopores. Trapping of the DNA origami onto the nanocapillary is proven by imaging fluorescently labeled DNA origami structures and simultaneous ionic current measurements of the trapping events. We then show two applications highlighting the versatility of these DNA origami nanopores. First, by tuning the pore size we can control the folding of dsDNA molecules ("physical control"). Second, we show that the specific introduction of binding sites in the DNA origami nanopore allows selective detection of ssDNA as a function of the DNA sequence ("chemical control").
我们将 DNA 折纸结构与玻璃纳米毛细管结合起来,可逆地形成杂交 DNA 折纸纳米孔。通过对荧光标记的 DNA 折纸结构进行成像和对捕获事件的同时离子电流测量,证明了 DNA 折纸结构被捕获到纳米毛细管上。然后,我们展示了两个应用,突出了这些 DNA 折纸纳米孔的多功能性。首先,通过调整孔径,我们可以控制 dsDNA 分子的折叠(“物理控制”)。其次,我们表明,在 DNA 折纸纳米孔中特异性引入结合位点可以选择性地检测 ssDNA,这取决于 DNA 序列(“化学控制”)。