Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China.
Bioinformatics. 2013 Aug 15;29(16):2032-40. doi: 10.1093/bioinformatics/btt320. Epub 2013 Jun 4.
Human cells are organized into compartments of different biochemical cellular processes. Having proteins appear at the right time to the correct locations in the cellular compartments is required to conduct their functions in normal cells, whereas mislocalization of proteins can result in pathological diseases, including cancer.
To reveal the cancer-related protein mislocalizations, we developed an image-based multi-label subcellular location predictor, iLocator, which covers seven cellular localizations. The iLocator incorporates both global and local image descriptors and generates predictions by using an ensemble multi-label classifier. The algorithm has the ability to treat both single- and multiple-location proteins. We first trained and tested iLocator on 3240 normal human tissue images that have known subcellular location information from the human protein atlas. The iLocator was then used to generate protein localization predictions for 3696 protein images from seven cancer tissues that have no location annotations in the human protein atlas. By comparing the output data from normal and cancer tissues, we detected eight potential cancer biomarker proteins that have significant localization differences with P-value < 0.01.
人类细胞被组织成不同生化细胞过程的隔室。为了使蛋白质在正常细胞中发挥其功能,需要将其在细胞隔室中的正确位置的出现时间正确,而蛋白质的定位错误可能导致病理性疾病,包括癌症。
为了揭示与癌症相关的蛋白质定位错误,我们开发了一种基于图像的多标签亚细胞位置预测器 iLocator,它涵盖了七个细胞定位。iLocator 结合了全局和局部图像描述符,并通过使用集成多标签分类器生成预测。该算法具有处理单定位和多定位蛋白质的能力。我们首先在人类蛋白质图谱中具有已知亚细胞位置信息的 3240 个人类正常组织图像上训练和测试 iLocator。然后,我们使用 iLocator 为来自七种无位置注释的人类蛋白质图谱的 3696 个蛋白质图像生成蛋白质定位预测。通过比较正常组织和癌症组织的输出数据,我们检测到了八个具有显著定位差异的潜在癌症生物标志物蛋白质,其 P 值<0.01。