Suppr超能文献

通过自动分离亚细胞模式来确定探针在不同亚细胞位置的分布。

Determining the distribution of probes between different subcellular locations through automated unmixing of subcellular patterns.

机构信息

Center for Bioimage Informatics and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2944-9. doi: 10.1073/pnas.0912090107. Epub 2010 Feb 1.

Abstract

Many proteins or other biological macromolecules are localized to more than one subcellular structure. The fraction of a protein in different cellular compartments is often measured by colocalization with organelle-specific fluorescent markers, requiring availability of fluorescent probes for each compartment and acquisition of images for each in conjunction with the macromolecule of interest. Alternatively, tailored algorithms allow finding particular regions in images and quantifying the amount of fluorescence they contain. Unfortunately, this approach requires extensive hand-tuning of algorithms and is often cell type-dependent. Here we describe a machine-learning approach for estimating the amount of fluorescent signal in different subcellular compartments without hand tuning, requiring only the acquisition of separate training images of markers for each compartment. In testing on images of cells stained with mixtures of probes for different organelles, we achieved a 93% correlation between estimated and expected amounts of probes in each compartment. We also demonstrated that the method can be used to quantify drug-dependent protein translocations. The method enables automated and unbiased determination of the distributions of protein across cellular compartments, and will significantly improve imaging-based high-throughput assays and facilitate proteome-scale localization efforts.

摘要

许多蛋白质或其他生物大分子定位于不止一个亚细胞结构。通过与细胞器特异性荧光标记物共定位,可以测量蛋白质在不同细胞区室中的部分,这需要为每个区室提供荧光探针,并与感兴趣的大分子一起获取图像。或者,定制的算法可以找到图像中的特定区域,并量化它们包含的荧光量。不幸的是,这种方法需要对算法进行广泛的手动调整,并且通常依赖于细胞类型。在这里,我们描述了一种无需手动调整的机器学习方法,用于估计不同亚细胞区室中荧光信号的量,只需要为每个区室获取单独的标记物训练图像。在对用不同细胞器探针混合物染色的细胞图像进行测试时,我们在每个区室中观察到估计和预期探针量之间的相关性达到 93%。我们还证明该方法可用于定量药物依赖性蛋白质易位。该方法能够自动且无偏地确定蛋白质在细胞区室中的分布,这将显著改善基于成像的高通量测定,并促进蛋白质组范围的定位工作。

相似文献

5
Communicating subcellular distributions.传达亚细胞分布。
Cytometry A. 2010 Jul;77(7):686-92. doi: 10.1002/cyto.a.20933.

引用本文的文献

本文引用的文献

1
Fast automated cell phenotype image classification.快速自动细胞表型图像分类
BMC Bioinformatics. 2007 Mar 30;8:110. doi: 10.1186/1471-2105-8-110.
4
A guide to accurate fluorescence microscopy colocalization measurements.精确荧光显微镜共定位测量指南。
Biophys J. 2006 Dec 15;91(12):4611-22. doi: 10.1529/biophysj.106.089441. Epub 2006 Sep 29.
5
Overview of informatics for high content screening.高内涵筛选信息学概述
Methods Mol Biol. 2007;356:269-80. doi: 10.1385/1-59745-217-3:269.
6
Controlling protein compartmentalization to overcome disease.控制蛋白质区室化以战胜疾病。
Pharm Res. 2007 Jan;24(1):17-27. doi: 10.1007/s11095-006-9133-z. Epub 2006 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验