Suppr超能文献

自动化免疫组化图像中蛋白质表达水平的分类,以提高癌症生物标志物的检测。

Automated classification of protein expression levels in immunohistochemistry images to improve the detection of cancer biomarkers.

机构信息

School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China.

Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China.

出版信息

BMC Bioinformatics. 2022 Nov 8;23(1):470. doi: 10.1186/s12859-022-05015-z.

Abstract

BACKGROUND

The expression changes of some proteins are associated with cancer progression, and can be used as biomarkers in cancer diagnosis. Automated systems have been frequently applied in the large-scale detection of protein biomarkers and have provided a valuable complement for wet-laboratory experiments. For example, our previous work used an immunohistochemical image-based machine learning classifier of protein subcellular locations to screen biomarker proteins that change locations in colon cancer tissues. The tool could recognize the location of biomarkers but did not consider the effect of protein expression level changes on the screening process.

RESULTS

In this study, we built an automated classification model that recognizes protein expression levels in immunohistochemical images, and used the protein expression levels in combination with subcellular locations to screen cancer biomarkers. To minimize the effect of non-informative sections on the immunohistochemical images, we employed the representative image patches as input and applied a Wasserstein distance method to determine the number of patches. For the patches and the whole images, we compared the ability of color features, characteristic curve features, and deep convolutional neural network features to distinguish different levels of protein expression and employed deep learning and conventional classification models. Experimental results showed that the best classifier can achieve an accuracy of 73.72% and an F1-score of 0.6343. In the screening of protein biomarkers, the detection accuracy improved from 63.64 to 95.45% upon the incorporation of the protein expression changes.

CONCLUSIONS

Machine learning can distinguish different protein expression levels and speed up their annotation in the future. Combining information on the expression patterns and subcellular locations of protein can improve the accuracy of automatic cancer biomarker screening. This work could be useful in discovering new cancer biomarkers for clinical diagnosis and research.

摘要

背景

一些蛋白质的表达变化与癌症的进展有关,可作为癌症诊断的生物标志物。自动化系统已广泛应用于蛋白质生物标志物的大规模检测,并为实验室实验提供了有价值的补充。例如,我们之前的工作使用基于免疫组化图像的机器学习分类器来检测蛋白质亚细胞位置的变化,以筛选结肠癌组织中位置发生变化的生物标志物蛋白。该工具可以识别生物标志物的位置,但没有考虑蛋白质表达水平变化对筛选过程的影响。

结果

在这项研究中,我们构建了一个自动分类模型,用于识别免疫组化图像中的蛋白质表达水平,并结合亚细胞位置筛选癌症生物标志物。为了最小化非信息切片对免疫组化图像的影响,我们采用代表性图像补丁作为输入,并应用 Wasserstein 距离方法确定补丁的数量。对于补丁和整幅图像,我们比较了颜色特征、特征曲线特征和深度卷积神经网络特征区分不同蛋白质表达水平的能力,并采用深度学习和传统分类模型。实验结果表明,最好的分类器可以达到 73.72%的准确率和 0.6343 的 F1 分数。在蛋白质生物标志物的筛选中,纳入蛋白质表达变化后,检测准确率从 63.64%提高到 95.45%。

结论

机器学习可以区分不同的蛋白质表达水平,并在未来加速其注释。结合蛋白质表达模式和亚细胞位置的信息可以提高自动癌症生物标志物筛选的准确性。这项工作有助于发现新的癌症生物标志物,用于临床诊断和研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b2/9644510/b41a431fbdfb/12859_2022_5015_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验